

Protein Data Bank CoreTrustSeal Certification: A Community Biomedical Archival Data Repository Example

John Westbrook RCSB PDB

Outline

- Brief overview of the PDB resources and services
- PDB support of the CTS principles
- Some challenges supporting CTS

PDB Overview

Protein Data Bank History

- PDB 1st Open Access digital data resource in all of biology
- Founded 1971with 7 X-ray structures of proteins
- Single global archive for protein and DNA/RNA experimental structures
- Today, Open Access to >150,000 structures
- wwPDB collaboration US (RCSB PDB), EU (PDBe), Japan (PDBJ), and BMRB

Some of the earliest structures in the PDB

Impact of PDB Datat on Drug Approvals

RCSB PDB Services Support the Full Structural Biology Data Life Cycle

PDB Support for CTS: Motivation and Process

PDB Incentives for CTS Certification

- Strong commitment and tradition within our scientific community for support of data and process standards
- Expectations of both our repository contributors and users to adopt and maintain best practices in archiving and data management
- Reinforces our strong commitment to FAIR practices in concert with Increasing focus of funders on supporting FAIR data management
- Certification documents the resource investment required to responsibly manage the full life cycle of archival data
- Relatively low barrier and modest effort certification process
- Good balance between rigor and certification effort

The CTS Certification Process

- Straight forward application process with a variety of examples to frame your input
- The majority of the required information was already in public view or in existing project documents
- The required/expected level of detail is a bit ambiguous

PDB Support for CTS How we tackled the requirements

Introductory Materials

- Repository type
- Repository community (contributors and users)
- Overview of activities
 - Biocuration policies and practices
 - Preservation of primary data artifacts
- Repository usage
- Repository organization and role

This information provided this at level of detail of our latest grant application and progress report.

I. Mission and Scope

- wwPDB maintains a single archive of macromolecular structural data that are freely and publicly available to the global community
- wwPDB maintains these organizational details on the wwpdb.org resource web site

II. Licenses

- PDB primary data are free of all copyright restrictions and made fully and freely available for both noncommercial and commercial users
- This PDB license pre-dates contemporary open source licenses
- Some additional conditions on adaptation of data protect authenticity of repository data files
- Compliance issues with primary data are rare
- Other PDB software and educational materials are provided under standard open source licenses (e.g., Apache and Creative Commons)

III. Continuity of Access

- 40+ year track record of funding support in US
- wwPDB organization provides for continuity of data and service access if a regional partner site should become unavailable

Regional partners responsible for data from: RCSB PDB (US): Americas and Oceania PDBe (UK): Europe and Africa PDBj (Japan): Asia and Middle East

IV. Confidentiality and Ethics

- Aside from a brief embargo period at deposition time, PDB data are open
- Personal identifying information (PPI) maintained on contributors is limited to the minimal contact information required to conduct the operations of the archive
- Usage statistics are presented in aggregate and appropriately anonymized
- Management of PPI data deemed GDPR compliant
- No other PPI flows out of the wwPDB

V. Organizational Infrastructure

- Regional wwPDB partner data centers
- Global load-balancing and failover of deposition services
- Complimentary data access services

Regional partners responsible for data from: RCSB PDB (US): Americas and Oceania PDBe (UK): Europe and Africa PDBj (Japan): Asia and Middle East

VI. Expert Guidance

wwPDB Method-specific Community Task Forces

Task Force	Meeting	Chair(s)/Membership	Outcomes
X-ray Validation Task Force	2008 2015	Randy Read (Univ of Cambridge) 17 members	(2011) Structure 19: 1395-1412
NMR Validation Task Force	2009- 2019	Gaetano Montelione (Rutgers) Michael Nilges (Institut Pasteur) 10 members	(2013) Structure 21: 1563-1570
3DEM Validation Task Force	2010	Richard Henderson (MRC-LMB) Andrej Sali (UCSF) 21 members	(2012) Structure 20: 205-214
Small-Angle Scattering Task Force	2011 2014	Jill Trewhella (Univ Sydney) 6 members	(2013) Structure 21: 875-881 (2017) Acta Cryst D73
Hybrid Methods Task Force	2014	Andrej Sali (UCSF), Torsten Schwede (Univ Basel), Jill Trewhella (Univ Sydney) 27 members	(2015) Structure 23: 1156-1167
Ligand Validation Workshop	2015		(2016) <i>Structure</i> 24: 502-508
PDBx/mmCIF Working Group	2011 -	Paul Adams (LBL) 13 members	Regular virtual meetings and workshops

VII. Data Integrity and Authenticity

- Community metadata and data standards
- Metadata and data change management policies
- Maintaining consistency through retrospective repository remediation
- Repository snapshotting
- Explicitly versioned data repository
- Expert biocuration
- ORCID identification for depositors

VIII. Appraisal

- Pre-deposition validation services
- wwPDB OneDep Deposition System
- Expert biocuration
- Data delivery in well-defined community data formats

IX. Documented Storage Procedures

 Conformance with OAIS Archive Reference Model

Reference Model for an Open Archival Information System (OAIS). Magenta Book CCSDS 6500-M-2. Washington: Consultative Committee for Space Data Systems, NASA; 2012.

X. Preservation Plan

- Reference public documentation describing the full PDB data life cycle (wwpdb.org)
 - All primary data deposition requirements
 - Deposition, validation, and biocuration policies
 - Transformations during data processing
 - Accessioning, versioning and release processing
 - Post release remediation
 - Repository archiving procedures and repository management

XI. Data Quality

- All PDB deposition, validation and biocuration tools support and enforce Community data standards
- PDB provides validation reports describing compliance with Community data quality standards
- Validation reports tailored for depositors, editorial reviewers, and general users
- PDB validation reports required by most scientific journals describing 3D structure determinations

XII. Workflows

- Review workflows across the PDB data life cycle
- Describe workflow representation and implementation
- Extensibility to increases in data volume and data content

Workflow change management

XIII. Data Discovery and Identification

XIV. Data Reuse

- Data and metadata requirements for deposition
- Content and format extensibility
- Maintaining repository content and format consistency through retrospective biocuration
- Repository metadata and data content documentation (mmcif.wwpdb.org)

XV. Technical Infrastructure

- Data reference standards and ontologies in use
 - Lengthy and requiring consolidation from many sources
- Full software development and deployment process
- Managing community software tools
- Infrastructure management
- Capacity monitoring and management

GitHub

XV. Security

- Service availability, redundancy, disaster recovery
- Institutional security protocols and resources
- Application security protocols
 - Coding standards
 - Code review
 - Testing and deployment protocols
 - Version control

Outcomes and Challenges Supporting CTS

General Benefits of the Certification Process

- Requires an audit of the full life cycle of the repository data pipeline
- Uncovers implicit knowledge of processes that may lack proper documentation
- Useful exercise to identify systematic weaknesses and potential areas for improvement
- Provides an opportunity to explore how other disciplines are addressing similar data management challenges
- Provides a useful benchmark for resource and capacity planning
- Provides an excellent learning experience

Some Certification Outcomes for PDB

- Harmonized practices and documentation across our regional data centers
- Improved alignment of our documentation with FAIR/FACT objectives
- Introspection helped focus our long-term plans to improve availability and disaster preparedness
- Explored some new approaches for schema registration, exchange and data discovery
- Certification beneficially contributed to our funding reapplication

Some CTS and Certification Challenges

- Supporting CTS requires diverse expertise in data science and engineering as well as in the target domain
- The long time horizon of some CTS objectives are difficult to support with typical 3-5 year competitive funding cycles
- Addressing long term objectives is similarly complicated for leased or cloud deployed infrastructure
- The resource burdens for robust CTS support may not be:
 - fully accounted in the scope of current program offerings
 - fully appreciated by grant reviewers
- Meetings and workshops like this will be important in providing the broader education to address some of these challenges

RCSB PDB Team

RCSB.ORG info@rcsb.org

Funding

RCSB PDB is funded by a grant (DBI-1338415) from the National Science Foundation, the National Cancer Institute, the National Institute of General Medical Sciences, and the US Department of Energy

Management

RCSB PDB is hosted by:

RUTGERS

UC San Diego

SDSC SAN DIEGO

University of California San Francisco

RCSB PDB is a member of the Worldwide Protein Data Bank partnership (wwPDB; **wwpdb.org**)

