SC

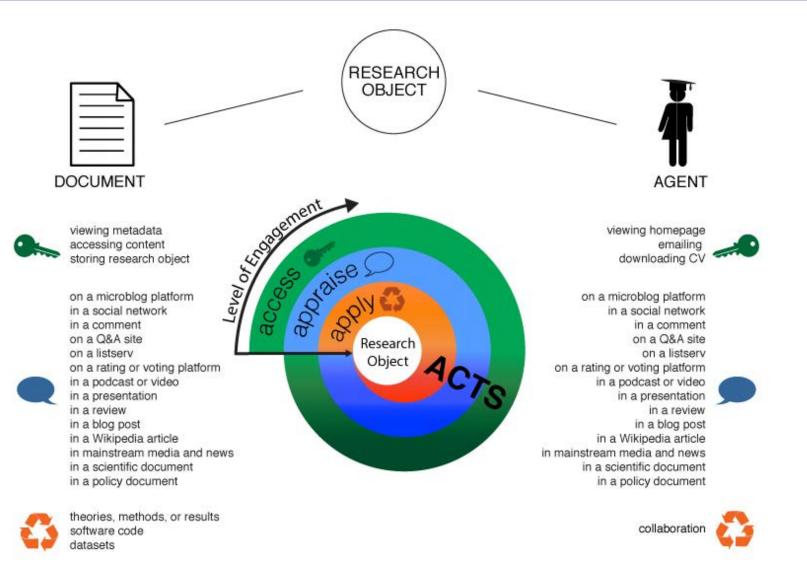
Cautions and lessons around development and implementation of scholarly metrics

Stefanie Haustein

NIH Virtual Workshop on Data Metrics | 19.02.2020 | @stefhaustein

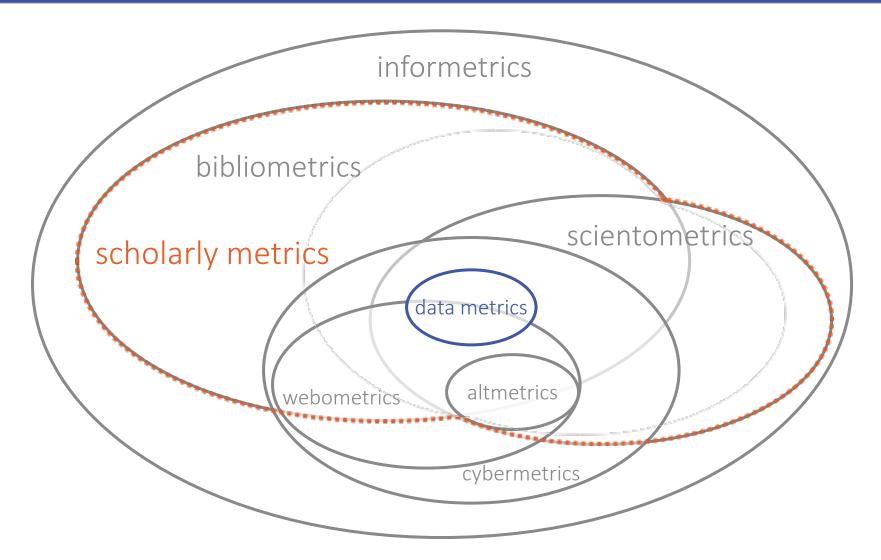
Outline

- \rightarrow What are scholarly metrics?
- \rightarrow What can scholarly metrics do?
- \rightarrow What can we learn from bibliometrics?
- \rightarrow How do we develop good data metrics?



Definition

Scholarly metrics are indicators based on acts related to scholarly documents or scholarly agents.


- → Acts include viewing, downloading, mentioning, citing or modifying publications.
- → Scholarly documents include a broad range of outputs from peer-reviewed journal articles and monographs to blog posts or datasets.
- → Scholarly agents include researchers, universities, funding organizations or scientific journals.

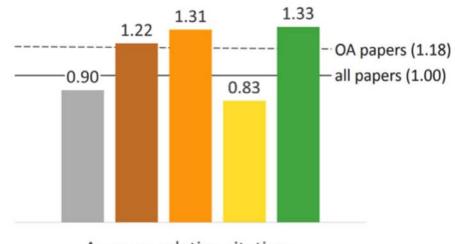
Haustein, S., Bowman, T. D., & Costas, R. (2016). Interpreting "altmetrics": Viewing acts on social media through the lens of citation and social theories. In *C.R. Sugimoto (Ed.), Theories of Informetrics and Scholarly Communication* (pp. 372-405). Berlin: De Gruyter Mouton

Haustein, S. (2016). Grand challenges in altmetrics: Heterogeneity, data quality and dependencies. *Scientometrics*, *108*(1), 413–423. https://doi.org/10.1007/s11192-016-1910-9

Complementing peer review

- → Peer review
 → Qualitative
 → Subjective
 → Small scale
 → Labor-intensive for experts
 - \rightarrow Resource-intensive

- \rightarrow Scholarly metrics
 - \rightarrow Quantitative
 - \rightarrow Objective
 - \rightarrow Large scale
 - →Labor-intensive for data scientists
 - \rightarrow Moderate resources


SC

Demonstrating productivity and impact

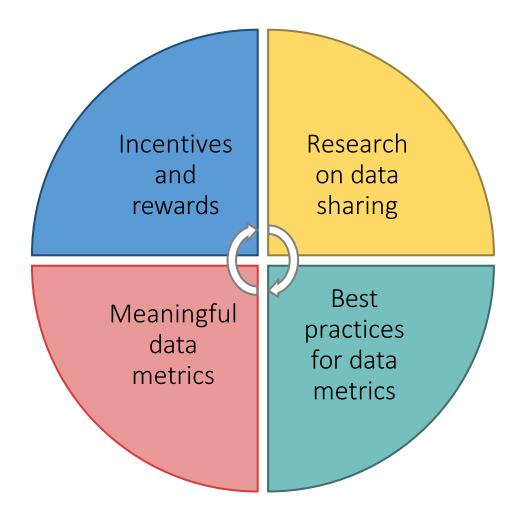
- \rightarrow Publication output
 - →Publication frequency
 →Publication behavior
 →Collaboration patterns
- \rightarrow Use and impact
 - \rightarrow Views, clicks and downloads
 - \rightarrow Scholarly impact
 - \rightarrow Citations
 - \rightarrow Awards

 \rightarrow Societal impact

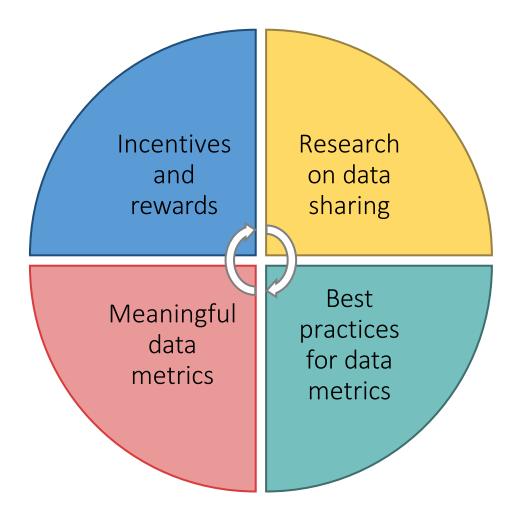
→Incentivizing open scholarship
 →Open access citation advantage

Average relative citations

closed
bronze
hybrid
gold
green

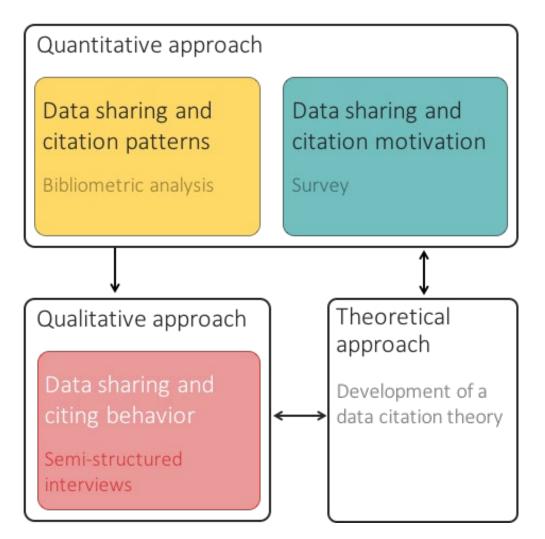

 \rightarrow Open data citation advantage?

Piwowar, H. A., Day, R. S., & Fridsma, D. B. (2007). Sharing Detailed Research Data Is Associated with Increased Citation Rate. *PLOS ONE*, *2*(3), e308. https://doi.org/10.1371/journal.pone.0000308
Piwowar, H., Priem, J., Larivière, V., Alperin, J.P., Matthias, L., Norlander, B., Farley, A., West, J., & Haustein, S. (2018). The state of OA: a large-scale analysis of the prevalence and impact of Open Access articles. *PeerJ*, 6, e4375. https://doi.org/10.7717/peerj.4375
Piwowar, H. A., & Vision, T. J. (2013). Data reuse and the open data citation advantage. *PeerJ*, 1, e175. https://doi.org/10.7717/peerj.175


Lack of data sharing incentives – Vicious circle

- 1. Researchers do not share and cite datasets due to a lack of incentives and rewards in academia
- 2. Bibliometricians do not study research data as scholarly outputs because of a lack of evidence of data reuse and citations
- 3. Best practices for bibliometric studies on research data have not yet been developed, as use cases are missing
- 4. Meaningful data metrics are not developed and not available to incentivize open data practices

Data sharing incentives – Positive feedback loop


- 1. Researchers share and cite datasets due to incentives and rewards in academia
- 2. Bibliometricians study research data as scholarly outputs based on evidence of data reuse and citations
- 3. Best practices for bibliometric studies on research data are being developed, as use cases are shared
- 4. Meaningful data metrics are developed and available to incentivize open data practices

SĽ

Incentivizing open scholarship

- \rightarrow Research on data sharing
 - →Data sharing and citation patterns (i.e., bibliometric analyses)
 - →Data sharing and citation motivations (e.g., surveys)
 - →Data sharing and citing behavior (e.g., interviews)
 - ightarrowData citation theory

Popular metrics

- \rightarrow Impact factor
 - \rightarrow Compares journals
 - →Average number of citations per publication
 - \rightarrow Developed by Eugene Garfield
 - \rightarrow Published annually since 1960s
 - \rightarrow Flawed indicator

\rightarrow H-index

- \rightarrow Compares individuals
- →Number of publications with same number of citations
- \rightarrow Developed by Jorge Hirsch
- \rightarrow Available in citation databases
- \rightarrow Inconsistent indicator

SI

Impact factor

→Created as size-independent metric to select important journals per discipline for inclusion in Science Citation Index

"In view of the relation between size and citation frequency, it would seem desirable to discount effect of size when using citation data to assess a journal's importance. We have attempted to do this by calculating a relative impact factor – that is, by dividing the number of times a journal has been cited by the number of articles it has published during some specific period of time. The journal impact factor will thus reflect an average citation rate per published article."

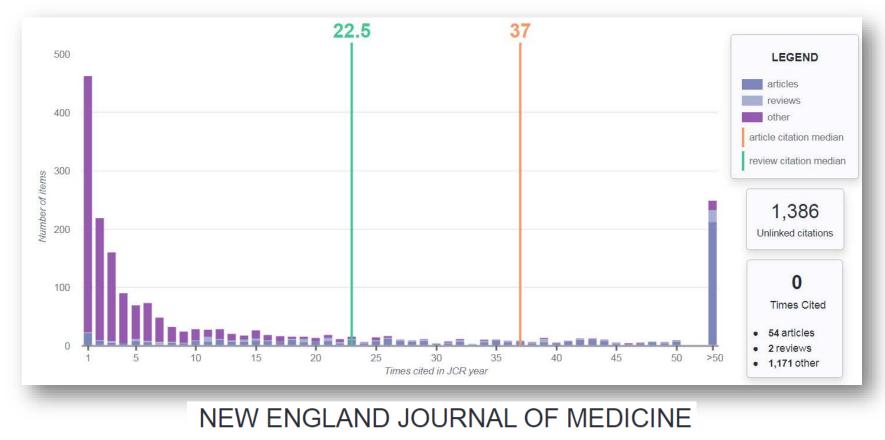
Garfield (1972, p. 476)

31

Impact factor

→Asymmetry between numerator (all citations) and denominator (citable items only)

 $JIF(2018) = \frac{Number \ of \ citations \ in \ 2018 \ to \ publications \ in \ 2016 \ and \ 2017}{Number \ of \ citable \ items \ published \ in \ 2016 \ and \ 2017}$

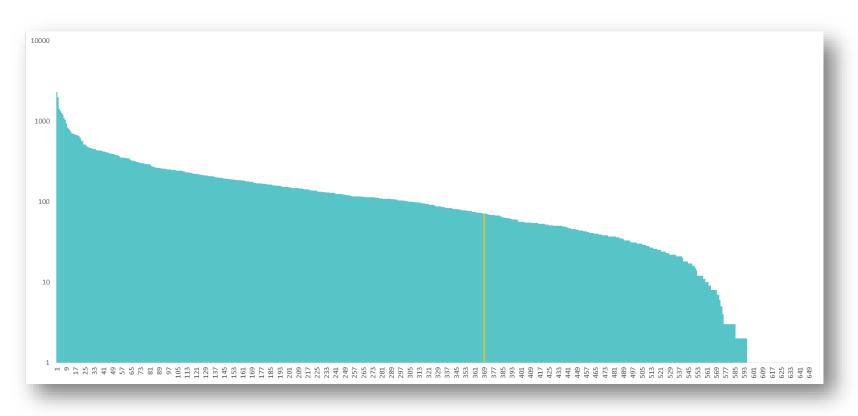

$$JIF(NEJM \ 2018) = \frac{24,100 + 22,189}{328 + 327} = \frac{46,289}{655} = 70.670$$
$$JIF_{all \ documents}(NEJM \ 2018) = \frac{24,100 + 22,189}{1,606 + 1,494} = \frac{46,289}{3,100} = 14.932$$
$$JIF_{citable \ items}(NEJM \ 2018) = \frac{19,918 + 18,511}{328 + 327} = \frac{38,429}{655} = 58.670$$

SL

Impact factor

\rightarrow Arithmetic mean representing a skewed distribution

JIF(NEJM 2018) = 70.670



SL

Impact factor

\rightarrow Misuse as substitute for actual citation rate

- \rightarrow Article level
- ightarrowAuthor level

SC

Impact factor

$\rightarrow \text{Lack}$ of field normalization

Medicine, General & Internal

	Full Journal Title	Total Cites	Journal Impact Factor ▼
1	NEW ENGLAND JOURNAL OF MEDICINE	344,581	70.670
2	LANCET	247,292	59.102
3	JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION	156,350	51.273
4	Nature Reviews Disease Primers	4,339	32.274
5	BMJ-British Medical Journal	112,901	27.604
6	JAMA Internal Medicine	15,215	20.768
7	ANNALS OF INTERNAL MEDICINE	57,057	19.315
8	PLOS MEDICINE	30,689	11.048

Information Science & Library Science

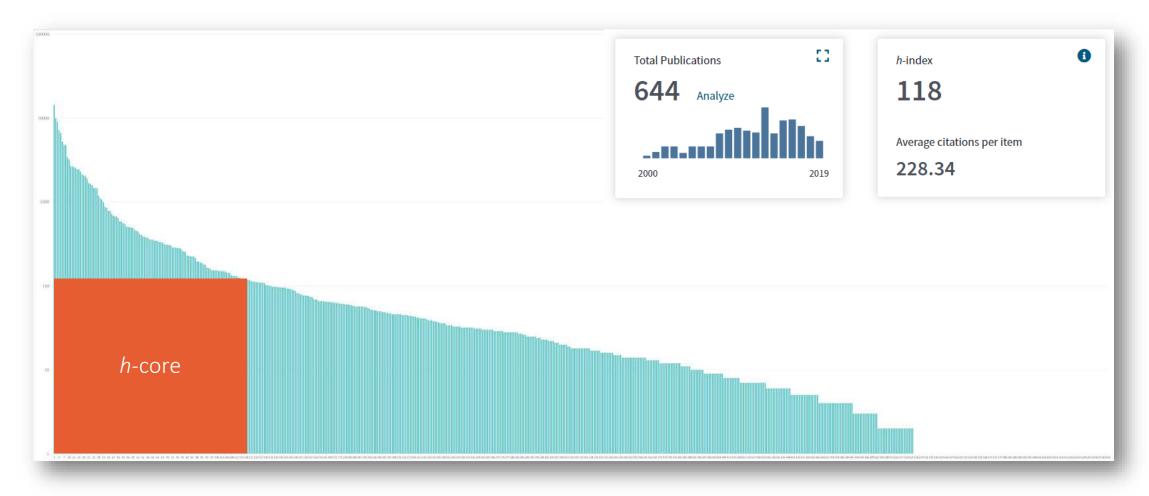
	Full Journal Title	Total Cites	Journal Impact Factor -
1	INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT	4,885	5.063
2	Journal of Computer- Mediated Communication	4,671	4.896
3	Journal of Knowledge Management	4,349	4.604
4	MIS QUARTERLY	17,042	4.373
5	GOVERNMENT INFORMATION QUARTERLY	3,430	4.311
6	JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION	9,319	4.292
7	INFORMATION & MANAGEMENT	7,129	4.120
8	JOURNAL OF STRATEGIC INFORMATION SYSTEMS	1,665	4.000

SC

H-index

→Introduced by physicist Jorge E. Hirsch as a parameter to quantify an author's research output and impact

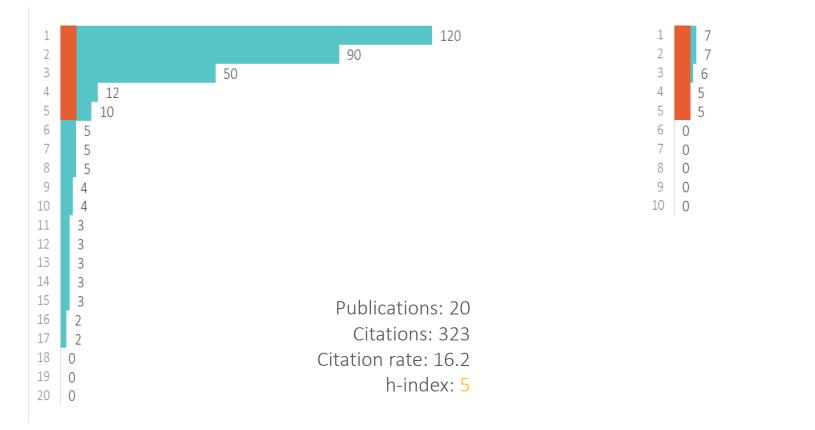
"A scientist has index h if h of his or her N_p papers have at least h citations each and the other (N_p-h) papers have $\leq h$ citations each."


Hirsch (2005, p. 16569)

SI

- \rightarrow Conflation of output and impact
- \rightarrow Lack of clear concept
- →Inconsistencies
- →Lack of field normalization
- \rightarrow Bias against early career researchers

H-index


\rightarrow Disregards publications and citations outside the h-core

SL

H-index

\rightarrow Disregards publications and citations outside the h-core

SL

H-index

\rightarrow Inconsistencies

The h-index violates the following properties:

- → If two scientists achieve the same relative performance improvement, their ranking relative to each other should remain unchanged.
- → If two scientists achieve the same absolute performance improvement, their ranking relative to each other should remain unchanged.
- → If scientist X1 is ranked higher than scientist Y1 and scientist X2 is ranked higher than scientist
 Y2, then a research group consisting of scientists X1 and X2 should be ranked higher than a research group consisting of scientists Y1 and Y2.

"[...]from the perspective of measuring the overall impact of a set of publications, the hindex behaves in a counterintuitive way. The mechanism used by the h-index to aggregate publication and citation statistics into a single number leads to inconsistent results. Because of this, our conclusion is that the h-index cannot be considered an appropriate indicator of the overall scientific impact of a set of publications."

Waltman & van Eck (2012, p. 9)

Adverse effects

Campbell's law

"The more any quantitative social indicator is used for social decisionmaking, the more subject it will be to corruption pressures and the more apt it will be to distort and corrupt the social processes it is intended to monitor."

Campbell (1979, p.85)

 \rightarrow Increasing publication output

SI

 \rightarrow "Salami" publishing

ightarrowHonorary authorship

- \rightarrow Increasing citation rates
 - \rightarrow Excessive self-citations
 - \rightarrow Citation cartels
 - →Pressuring authors during peer review to cite one's publications
- → Changing publication behavior
 → Submitting to high-impact journals
 → Collaborating internationally

Developing data metrics

- \rightarrow Generate empirical evidence
 - → Research on data sharing and citation patterns Quantitative studies
 - → Research on motivations to (not) share and cite data Qualitative studies
- \rightarrow Develop evidence-based indicators
 - → Standardize data usage counts Use COUNTER Code of Practice for Research Data Usage Metrics
 - \rightarrow Field normalization

Compare dataset use to field-specific benchmark

- → Access type normalization Distinguish between open access and mediated access
- ightarrow Data type normalization

Distinguish between different types and sizes of shared data

→ Create complex and multidimensional metrics Avoid easy-to-manipulate counts, unidimensional rankings, composite indicators

31

5.0/4.0

=125

Normalized data citations

Observed citations

Benchmark

Expected citation rate (per field, year and other relevant characteristic)

Pediatrics

SL

Educating metrics users

- \rightarrow Metrics literacies
 - \rightarrow Definition

An integrated set of competencies, dispositions and knowledge that empower individuals to recognize, interpret, critically assess and effectively and ethically use scholarly metrics.

→Aim

 \rightarrow Increasing metrics literacies among researchers and research administrators

 \rightarrow Reducing the misuse of metrics in academia

→Tools

 \rightarrow Efficient, effective and high quality open educational resources

 \rightarrow Short, engaging, non-textual multimedia

Thank you. Merci. Danke.

@stefhaustein | stefanie.haustein@uottawa.ca

Faculté des arts École des sciences de l'information

Faculty of Arts School of Information Studies