The Goal Model organism neural circuit knowledge graph

NOT-OD-21-094

Compute on knowledge graph to predict circuits, effects of genetic variants, etc.

National Human Genome NIH **Research Institute**

Connectome data (physical connections between neurons)

Functional data (activity of neurons by ephys or Ca+2)

Link Neurons to Behavior

Gene expression data (e.g., neuropeptides, receptors, ion channels)

Optogenetic data: neuronal activation and silencing

Sharan Prakash, Kimberly Van Auken, Nick Stiffler, Raymond Lee, Markus Meister, David Hill, PWS

The Problem

Convert author statements to assertions

"To determine whether VC synaptic transmission regulates egg laying via HSN, we recorded HSN Ca2+ activity in WT and transgenic animals expressing TeTx in the VCs (Fig. 6A). During the egg-laying active state, the HSNs drive egg laying during periods of increased Ca2+ transient frequency in the form of burst firing (Fig. 6B) (Collins et al., 2016; Ravi et al., 2018a). We observed a significant increase in HSN Ca2+ transient frequency when VC synaptic transmission was blocked compared with nontransgenic control animals (Fig. 6C). WT animals spent ~11% of their time exhibiting high-frequency burst activity in the HSN neurons, whereas transgenic animals expressing TeTx in the VC neurons spent ~21% of their time exhibiting HSN burst firing activity (Fig. 6D). These results are consistent with the interpretation that VC neurotransmission is inhibitory toward the HSNs, such as proposed in previous studies (Bany et al., 2003; Zhang et al., 2008)."

A Neuron A to Neuron B (explicit synaptic)

Progress Model types of connections between neurons **Use GO-CAM approach** Gene Activity Affecting Synaptic Transmission С

Sensing of environmental stimuli by receptor within neuron D

Progress Model types of connections between neurons

Neuron-neuron interaction Neuron regulates behaviour Neuron regulates cellular activity Neuronal activity regulates peptide secretion. **Mechanical regulation** Neuromodulation Etc.

Categories of Neurobiological Phenomena Modelled with GO-CAM

Activity of Neuron A regulates activity of Neuron B (explicit synaptic)

Neurotransmitter activity regulates behaviour or cell activity

- Neurotransmitter regulates behaviour via specific receptor (cell agnostic)
- Neurotransmitter regulates behaviour via specific receptor in identified neuron

G-protein pathway activity regulates behaviour or cell activity

G protein activity in specific neuron regulates behaviour

Ion channel activity regulates behaviour or cell activity

Neurotransmitter regulates neuronal activity via ion channel

Environmental influence on behaviour or cell activity

Environmental condition regulates neuronal activity

- Mechanical stimulation of Neuron A regulates activity of Neuron B
- Neuromodulation of specific neuron by ion channel activity (cell agnostic)

Model neuropeptidergic signaling

Progress Ontology development: add to existing ontologies

Category	Proposed Novel or Modified Class	Notes, Definitions or Proposed Modification	Molecular		The directed movement of chloride ions out of a					
Biological Process	Neuromodulation	Any process that regulates the excitability, dynamic response, synaptic connectivity or output (electrical or molecular) of a neuron.	Function Molecular Function	Chloride Ion Export	Binding to and responding, e.g. by conformation change, to changes in the cellular level of car					
Biological Process	CO2 avoidance	Locomotory behavior directed away from a source or gradient of carbon dioxide.	Tunction	CO2 Sensor activity	A type of experimental phenotypic evidence a from experiment in which neuronal activity is					
		Any process that modulates the frequency of membrane depolarization. Membrane depolarization	ECO Evidence Classes	Neuron Chemical Inhibition Assay	manipulated using genetically encoded, chemic activated inhibitors of neural activity.					
Biological Process	Membrane depolarization (frequency)	is the process in which membrane potential changes in the depolarizing direction from the resting potential, usually from negative to positive.	ECO Evidence Classes	Synaptic Transmission Inhibition Assay	A type of experimental phenotypic evidence from experiment in which neuron-to-neuron transmission is manipulated using geneticall encoded inhibitors of synaptic transmission.					

i i	ECO Evidence Classes	Long-term Exposure or Conditioning Assay	A type of experimental phenotypic evidence are from experimental treatment involving sustaine exposure of an organism to one or more environmental conditions.							
	Environmental Inputs	Nutrition	Exposure to a source of nutrition such as a naturally-occuring food source or specific supplemental nutrition e.g. amino acids							
	Environmental Inputs	Increasing	Exposure to an input whose intensity or freque increasing over time or space.							

Visualization logic & design

Use <u>nemanode.org</u> funcoNN.princeton.edu

causally upstream of activity silencing genetics

Thanks to Mei Zhen (Toronto) and Andy Leifer (Princeton)

Training sets for NLP

Towards Automated generation of first-pass semantic models

Biological Category	PMID	Author	Author Statement	ECO evidence 1	ECO avidance 2	ECO avidenco 3	PROCESS 1	Relation 1a	GENE	CELL/CC INPUT/ OUTP UT		NE CELL/C	C INPUT/O Relation GE UTPUT 1c	NE CELL/C INPUT/ Relation C OUTPU 1d T	PROCESS 2	Relation 2a	GENE	CELL/CC	INPUT/0 UTPUT	O Relation GENE	E (
G protein activity regulates gene expression + G protein activity regulates neurotransmitter biosynthesis		Tanis et al 2008	⁶ Mutations in goa-1 caused a twofold increase in ex-pression of fluorescent transgenes driven by the tph-1 promoter in the HSNL (Figure 5, A–C), suggesting that GOA-1 signaling reduces expression from the tph-1 pro-moter. A sixfold decrease in fluorescence intensity in the HSNL was observed in egi-30 mutants, indicating that EGL-30 signaling stimulates expression from the tph-1 promoter (Figure 5, A, B, D, and E). The opposing effects of GOA-1 and EGL-30 on tph-1 expression were reproduced using five independent chromosomally in-tegrated transgenes (data not shown). Each consisted of the tph-1 promoter and 23 bp of the tph-1 59 untranslated region, followed by coding sequences for a variety of DsRed2 or GFP proteins and the unc-54 39 untranslated region. An analogous GFP transgene in which the tph-1 promoter was replaced by the unc-86 promoter was also expressed in the HSNs (Adler et al. 2006) but no changes in expression levels were observed in goa-1 and egi-30 mutant animals compared to the wild type (Figure SA). These results show that GOA-1 and EGL-30 antagonistically regulate expression from the tph-1 pro-moter, presumably by regulating	Mutant visible phenotype evidence used in manual assertion (ECO:0007118)			(GO:000392 S) G protein activity	and the second second	goa-1		occurs in	HSN		causally upstrea of with negativ effect	(GO:0010468) regulation of gene expression	has input			tph-1		
G protein activity regulates gene expression + G protein activity regulates neurotransmitter biosynthesis		Tanis et al 2008	"Mutations in goa-1 caused a twofold increase in ex-pression of fluorescent transgenes driven by the tph-1 promoter in the HSNL (Figure 5, A–C), suggesting that GOA-1 signaling reduces expression from the tph-1 pro- moter. A sixfold decrease in fluorescence intensity in the HSNL was observed in egl-30 mutants, indicating that EGL-30 signaling stimulates expression from the tph-1 promoter (Figure 5, A, B, D, and E). The opposing effects of GOA-1 and EGL-30 on tph-1 expression were reproduced using five independent chromosomally in- tegrated transgenes (data not shown). Each consisted of the tph-1 promoter and 23 bp of the tph-1 59 untranslated region, followed by coding sequences for a variety of DsRed2 or GFP proteins and the unc-54 39 untranslated region. An analogous GFP transgene in which the tph-1 promoter was replaced by the unc-86 promoter was also expressed in the HSNs (Adler et al. 2006) but no changes in expression levels were observed in goa-1 and egl-30 mutant animals compared to the wild type (Figure SA). These results show that GOA-1 and EGL-30 antagonistically regulate expression from the tph-1 pro-moter, presumably by regulating transcription."	evidence used in manual assertion			(GD:000392 5) G protein activity		egi-30		occurs in	HSN		causally upstrea of with positive effect	(G0:0010468) m regulation of gene expression	has input			tph-1		
G protein activity regulates gene expression + G protein activity regulates neurotransmitter biosynthesis		Tanis et al 2008	"We tested whether GDA-1 and EGL-30 act cell au- tonomously in the HSNs to have their opposing effects on tph-1 expression. We crossed the chromosomally integrated transgenes that had previously been used to manipulate GOA-1 and EGL-30 function in the HSNs into one of the tph-1 promoterTDsRed2 transcriptional reporter strains. Expression of PTX specifically in the HSNs to inactivate GOA-1 caused a threefold increase in fluorescence intensity (Figure SF). This effect was greater than that observed using the goa-1 mutation (Figure SA), likely because PTX causes more complete inactivation of GOA-1 than the partial loss of function goa-1 mutation used. Expression of GOA-1Q205L in the HSNs of the goa-1 mutant caused a 2.5-fold reduction in expression levels of the tph-1 reporter transgene (Figure SG). EGL-30Q205L expression in the HSNs of the egl-30 mutant caused a 2.3-fold increase in expression levels of the tph-1 reporter transgene (Figure SH). A 1.5- fold increase in expression levels of the tph-1 reporter transgene was also observed when wild-type EGL-30 was expressed in the HSNs of the egl-30 mutant (1311 6 90 fluorescence intensity units compared to 888 6 83 fluorescence intensity units in the egl-30 mutant con- trol). These results show that GOA-1 and EGL-30 act cell autonomously to regulate tph-1 expression in the HSNs."	evidence used in manual assertion [ECO:0007118]			(GD:000392 5) G protein activity		goa-1		occurs in	HSN		causally upstrea of with negative effect	m regulation of gene-	occurs in		HSN		has input	
G protein activity regulates gene expression cell autonomously + G protein activity regulates neurotransmitter biosynthesis cell autonomously	1820236	5 Tanis et al 2008	"GOA-1 and EGL-30 signaling may affect serotonin levels in all serotonergic neurons, or this phenomenon could be HSN specific. Thus, we analyzed the effects of G-protein mutations on serotonin levels in two other pairs of C. elegans serotonergic neurons, the ADFs and NSMs. In the ADFs, the G proteins affected serotonin levels and tph-1 transcription as observed in the HSNs. Antiserotonin staining increased 1.3-fold in the goa-1 mutant and decreased 1.6-fold in the egl-30 mutant (Figure 6F), and analogous changes in tph-1 reporter transgene expression were also seen in the ADFs (data not shown). However, the G proteins caused different effects in the NSM neurons compared to those seen in the HSNs. Antiserotonin staining decreased 1.4- to 1.6-fold in the NSMs of both the goa-1 and the egl-30 mutants (data not shown). These results indicate that there is cell-type specificity in G-protein regulation of tph-1 ex-pression, demonstrating that this phenomenon must be studied in specific identified neurons."	In manual assertion [ECD:0007118]			[GD:000392 S] G protein activity		goa-1		occurs In	ADF		causally upstrea of with negativ effect	(GD:0010468) regulation of gene expression	occurs in		HSN		has Input	
G protein activity regulates gene expression cell autonomously + G protein activity regulates neurotransmitter biosynthesis cell autonomously	1820236	5 Tanis et al 2008	"GOA-1 and EGL-30 signaling may affect serotonin levels in all serotonergic neurons, or this phenomenon could be HSN specific. Thus, we analyzed the effects of G-protein mutations on serotonin levels in two other pairs of C. elegans serotonergic neurons, the ADFs and NSMs. In the ADFs, the G proteins affected serotonin levels and tph-1 transcription as observed in the HSNs. Antiserotonin staining increased 1.3-fold in the goa-1 mutant and decreased 1.6-fold in the egl-30 mutant (Figure 6F), and analogous changes in tph-1 reporter transgene expression were also seen in the ADFs (data not shown). However, the G proteins caused different effects in the NSM neurons compared to those seen in the HSNs. Antiserotonin staining decreased 1.4- to 1.6- fold in the NSMs of both the goa-1 and the egl-30 mutants (data not shown). These results indicate that there is cell-type specificity in G-protein regulation of tph-1 ex-pression, demonstrating that this phenomenon must be studied in specific identified neurons."	Mutant visible phenotype evidence used in manual assertion (ECO:0007118)			(GD:000392 S) G protein activity	and the second second	egl-30		occurs In	ADF		causally upstrea of with positive effect	(GD:0010468) regulation of gene expression	occurs in		HSN		has input	
G protein activity regulates gene expression cell autonomously + G protein activity		Tanis et al 2008	"We tested whether GOA-1 and EGL-30 act cell au- tonomously in the HSNs to have their opposing effects on tph-1 expression. We crossed the chromosomally integrated transgenes that had previously been used to manipulate GOA-1 and EGL-30 function in the HSNs into one of the tph-1 promoterTDsRed2 transcriptional reporter strains. Expression of PTX specifically in the HSNs to inactivate GOA-1 caused a threefold increase in fluorescence intensity (Figure 5F). This effect was greater than that observed using the goa-1 mutation (Figure SA), likely because PTX causes more complete inactivation of	evidence used in manual			[G0:000392 S] G protein activity		egi-30		occurs in	HSN		causally upstrea of with positive effect	(GO:0051899) Membrane depolarization			HSN		has output	

Publish method: use of GO-CAM semantic modeling for neural circuits (80)

Adopt ACKnowledge systems for neural circuit assertions

Incentivize experts via microReviews

Visualize connectome, activity, and circuit assertions

Apply method to rmouse retina

Compute on knowledge graph to predict circuits, effects of genetic variants, etc.

pws@caltech.edu @wormraiser

