Breakout Session 1: Track B

Cloud Computing for Optical Image Restoration and Intramural Training

Dr. Johnny Tam (Moderator), Senior Investigator, NIH/NEI
Dr. Vineeta Das, Postdoc, NIH/NEI
Dr. Jiamin Liu, Staff Scientist, Advanced Imaging and Microscopy (AIM) Resource, NIH

Cloud Computing for Optical Image Restoration and Intramural Training

Johnny Tam, Jiamin Liu, and Vineeta Das NEI, NIBIB, and AIM

Intramural Research Program, National Institutes of Health

Objectives

- 1. Develop and apply artificial intelligence-based methods to imaging datasets in the cloud.
- 2. Train the next generation of data scientists by creating a small community of cloud users interested in optical imaging and microscopy.

Part 1: Cloud computing for optical microscopy

Jiamin Liu
Advanced Imaging and Microscopy (AIM) Resource

Deep Learning to Denoise and Enhance Resolution for Super Resolution Imaging

Advanced Imaging and Microscopy Resource (AIM)
NIBIB, NIH

ARTICLES

https://doi.org/10.1038/s41592-021-01155

Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes

Jiji Chen ^{1,10} ^{1,10}

nature biotechnology

Article

https://doi.org/10.1038/s41587-022-01651-1

Three-dimensional structured illumination microscopy with enhanced axial resolution

Received: 15 August 2022
Accepted: 16 December 2022
Published online: 26 January 2023

Check for updates

Xuesong Li ⊕ ^{1,14} □, Yicong Wu ⊕ ^{1,2} □, Yijun Su ^{1,2,3,4,14}, Ivan Rey-Suarez ⁵, Claudia Matthaeus ⁶, Taylor B. Updegrove ⁷, Zhuang Wei ⁹, Lixia Zhang ², Hideki Sasaki ⊕ ^{3,4}, Yue Li ⊕ ⁹, Min Guo ⊕ ^{1,5}, John P. Giannini ⁷, Harshad D. Vishwasrao ², Jiji Chen ⊕ ², Shih-Jong J. Lee ^{3,4}, Lin Shao ¹⁰, Huafeng Liu ⁹, Kumaran S. Ramamurthi ⁷, Justin W. Taraska ⊕ ⁶, Arpita Upadhyaya ^{3,1}, Patrick La Riviere ⊕ ^{2,13} & Hari Shroff ^{1,2,13,14}

CARE: Content-aware image restoration Nat Methods. 2018 Dec;15(12):1090-1097. ESRGAN: Enhanced super resolution generative adversarial network arXiv:1809.00219v2 SRResNet: Super resolution ResNet arXiv:1609.04802v5

RCAN vs State-of-Art Methods

Cross Imaging Modality: Confocal to STED

Hyperparameters Tuning

More residual blocks increase 3D RCAN performance. It requires much more training time and high-end GPU.

nature biotechnology

Article

https://doi.org/10.1038/s41587-022-01651-1

Three-dimensional structured illumination microscopy with enhanced axial resolution

Received: 15 August 2022

Xuesong Li • 1.14 , Yicong Wu • 1.2 , Yijun Su 1.2.3,4.14 , Ivan Rey-Suarez 5, Claudia Matthaeus 6, Taylor B. Updegrove 7, Zhuang Wei 8, Lixia Zhang 2, Hideki Sasaki • 3.4 , Yue Li • 9 , Min Guo • 1.15 , John P. Giannini 1, Harshad D. Vishwasrao 2, Jiji Chen • 2, Shih-Jong J. Lee 3.4 , Lin Shao 10 , Huafeng Liu 9, Kumaran S. Ramamurthi 7, Justin W. Taraska • 6 , Arpita Upadhyaya 5.11 , Patrick La Riviere • 12.13 & Hari Shroff 1.2.13,14

DL Enables 120 nm Isotropic Resolution

Part 2: Cloud computing for optical imaging in the eye

Vineeta Das National Eye Institute

Imaging of the RPE cells

Noisy image of RPE cells Single acquisition

Average of 120 acquisitions

Parallel discriminator GAN (P-GAN) for RPE recovery

*S1 and S2 represent subjects

Vineeta Das, Furu Zhang, Andrew Bower, Joanne Li, Tao Liu, Nancy Aguilera, Bruno Alvisio, Zhuolin Liu, Daniel Hammer, and Johnny Tam, *accepted in principle to Nature Communications Medicine*

Al assisted imaging enables large scale RPE visualization

Imaging of the cone photoreceptors

Dense sampling (DS)
Cone photoreceptors

Sparse sampling (SpS)

Results

Estimated cell spacing (μm)

Location	DS	Al
L1	11.5	11.3
L2	9.8	10.2
L3	8.3	8.0

L1, L2, and L3 denote regions of interest imaged at 1.5 mm, 2.1 mm and 2.7 mm temporal to the fovea, respectively.

Acknowledgements

AIM / NIBIB NEI

Current members Harshad Vishwasrao Andrei Volkov

Jiji Chen Tao Liu

Jiamin Liu

Previous members Hari Shroff Bruno Alvisio

Yicong Wu Jianfei Liu

Xuesong Li

Funding

Intramural Research Program of the National Institutes of Health

STRIDES and the NIH Office of Data Science Strategy