Breakout Session 2: Track B

Scaling CDE Curation Model Training

Mr. Mark Weston CEO, Netrias, LLC

METRIAS

FY24 ODSS Cloud Supplement Program PI Meeting

Scaling CDE Curation Model Training

FY2023 Funding Request Notice for Supporting the Exploration of Cloud in NIH Intramural Research and Contracts

Mark Weston weston@netrias.com

www.netrias.com

Summary

- Currently performing on SBIR Phase II for NIAAA: Alcoholism Solutions: Synthesizing Information to Support Treatments (ASSIST), Contract #75N94022C00003
- Build a data curation and harmonization toolkit and web portal to help researchers rapidly curate metadata and support data sharing and data archive initiatives

Project Goals

Advance and reduce barrier of entry for:

Data harmonization:

- Develop an extensible set of Common Data Elements (CDEs) for AUD researchers
- Create a data curation and harmonization toolkit to ease data access and collaboration
- Al modeling to harmonize between heterogeneous CDE representations

Imputation:

- Integrate data with prior datasets and infer missing conditions
- Validate model by holding out some conditions

Deployment:

- Simplify deployment of apps from Jupyter Notebooks
- Access tools through an easy-to-use web portal

Cloud Resource Benefits

- Two main areas that benefit from cloud resources:
 - Metadata term curation models to harmonize between heterogeneous CDE representations utilize smaller, bi-directional LSTM natural language processing models - one per type of data.
 - Cloud resources allows training of larger, generalizable models and accelerate multimodel training
 - Machine learning based imputation models ("Combinatorial Design Model") benefit from larger neural network models with greater numbers of parameters

Motivation for Cloud Resources

- Previously utilized Netrias-owned compute and selective, limited use of Cloud services: Amazing Web Services (AWS) GPU instance (g4dn instance type). 1
 Nvidia T4 GPU, 16 VCPUs, and 64 GiB of ram
- Under the current resources, limited to running a single instance at a time. Model
 approaches the available memory during training; can only train one instance of
 the model at a time
- Given available instance memory, cannot train larger models without utilizing a larger instance type

Previous Process

- Single Instance Training
- Limited Memory and Model Size
- Notebooks run locally on instance
- Model export via SCP/SSH

Updated Process

- Multi Instance Training
- Greatly expanded GPU, Instance Memory and Model Size
- Notebooks run locally on instance
- Model export via SCP/SSH

Benefits

- Train multiple models simultaneously
 - Faster exploration of model hyperparameter space, model architecture variations, and model validation and testing
- Train models on larger and more powerful instances with increased GPU, VCPU, and memory amounts
 - Exploration of models that have larger parameter counts that do not fit on our current instance type
- More powerful training instances will improve iteration time, accelerating our overall development timeline

Benefits and Metrics

- Accelerate model training and development work as we make use of these additional instance types
- Facilitates faster iteration and release of models to the larger NIAAA research community
- Metrics
 - Number of model(s) trained before and after the cloud service improvement
 - Size (in parameter space) of the models trained before and after the cloud service improvement
 - Model performance and generalizability in accuracy metrics for both the curation and CDM models

Thank you!

Questions / Discussion

