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Introduction

˝ In recent years, the machine learning community has become alert to the ways that
predictive models can introduce unfairness in decision-making.

1˝ Unfairness is defined as the disparity in prediction performances between subgroups .
˝ Examples include: recidivism prediction, credit worthiness, facial recognition, job
recommendation/listing, ...

˝ To address this issue, there has been a significant body of work in the machine
learning community on algorithmic fairness.
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Introduction

˝ The healthcare community also became alert to this problem (Mhasawade et al.,
2021; Fuster et al., 2022; Xu et al., 2022). For example, we found substantial
disparities in the Electronic Health Record (EHRs):
´ Minority patients and patients with disadvantaged social determinants of health

are often under-represented in terms of sample sizes, number of encounters, and
number of lab results (predictors)

˝ Despite all these eforts, most of the existing work has focused on predictions for
binary classifcation.

˝ Thus, there is a gap between the practical use of models for various types of
outcomes (e.g. count data) and the development of fairness-aware methodologies for
those models.

˝ In this study, we develop a framework to achieve fair predictions.
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Introduction

Do the prediction performance disparities exist?

.. if we apply generalized linear models?
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Introduction
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Outcome Type Dataset Group (K) Test MSE a Disparity Rel. Disp.(Disp./MSE) 

Adult Gender (2) 0.105 0.023 21%
Arrhythmia Gender (2) 0.258 0.029 11%

Binary COMPAS Race (4) 0.211 0.004 2%
Drug Race (2) 0.112 0.092 20%

German Gender (2) 0.183 0.045 25%
Crime Race (3) 0.057 0.092 163%

Continuous
Law School
Parkinsons

Race (5)
Gender (2)

0.840
93.112

0.148
31.416

18%
34%

Student Gender (2) 0.677 0.203 30%
Count HRS Race (4) 0.579 0.300 52%

Drug Race (2) 0.079 0.005 7%
Multiclass HCV Gender (2) 0.020 0.015 76%

Obesity Gender (2) 0.062 0.032 51%

Motivating Example: Performance Disparity of GLMs on Benchmark Datasets

a average absolute diference of groupwise MSEs



Objective

˝ Goal: Develop a fair Generalized Linear Model to reduce the prediction performance
disparity between subgroups, while not decreasing the overall performance as much
as possible
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Demographic Parity

˝ Suppose we are given K groups defned by a sensitive attribute A (e.g.
race/ethnicity, gender, or such).

Definition: Demographic Parity (Kamiran and Calders, 2009; Hardt et al., 2016)
A GLM satisfes demographic parity (DP) if its prediction f pXq is statistically independent
of the sensitive attribute A. That is, µpXβq KK A.
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Fair GLMs

Thus, the MMD fairness penalty term is:
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Case Study

Motivating Example Revisited

Outcome Dataset
MSE

GLM
Rel. Disp.

FGLM-LMMD
MSE Rel. Disp.

FGLM-GMMD
MSE Rel. Disp.

Binary

Arrhythmia
COMPAS

Drug
German

0.27
0.21
0.11
0.18

11%
2%
15%
24%

0.28pĲ0.01q 
0.22pĲ0.01q 
0.11p0.00q 
0.19pĲ0.01q 

10%pİ1%pq 
1%pİ1%pq 
17%pĲ2%pq 
21%pİ3%pq 

0.27pĲ0.01q 
0.22pĲ0.01q 
0.11p0.00q 
0.18p0.00q 

0%pİ11%pq

1%pİ1%pq

12%pİ3%pq

21%pİ3%pq 

Continuous

Crime
Parkinsons
Student

0.06
97.8
0.67

148%
35%
30%

0.04pİ0.02q 
92.6pİ5.2q 
0.67p0.00q 

72%pİ76%pq 
34%pİ1%pq 
29%pİ1%pq 

0.04pİ0.02q 
95.8pİ2.0q 
0.67p0.00q 

70%pİ78%pq

27%pİ7%pq

29%pİ1%pq

Count HRS 0.58 52% 0.59pĲ0.01q 50%pİ2%pq 0.58p0.00q 47%pİ5%pq 

Multiclass
Drug
HCV

Obesity

0.08
0.02
0.06

4%
41%
36%

0.08p0.00q 
0.02p0.00q 
0.06p0.00q 

2%pİ2%pq 
32%pİ9%pq 
35%pİ1%pq 

0.08p0.00q 
0.02p0.00q 
0.07pĲ0.01q 

0%pİ4%pq

5%pİ36%pq

20%pĲ16%pq 
*Hyperparameters of the fair models are selected for their MSEs to remain below 110% of GLM’s MSE
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Conclusion

˝ The naive method may generate disparate prediction performances for the
under-represented subpopulations

˝ The proposed fair model can efectively reduce prediction disparity while maintaining
the overall prediction performances

˝ It is applicable to most types of outcomes
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Future Directions

˝ Parent R01 Project: Apply the fair GLMs to improve prediction fairness for the
under-represented sub-populations in the presence of unbalanced sample sizes and
covariates

˝ Methodological Directions Improve the fair GLMs with mis-labeled sensitive
attributes and missing data, which often are found in EHRs

˝ Time-to-event Models Fairness-aware survival analysis methods have gotten less
attention so far. A similar approach could be applied to survival analysis models.
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