

@openforcefield

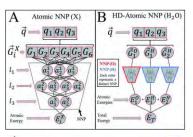
www.openforcefield.org

Extending the QCArchive small molecule quantum chemistry archive to support machine learning applications in biomolecular modeling

John D. Chodera, Memorial Sloan Kettering Cancer Center

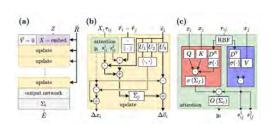
September 31, 2022 | PI: Michael R. Shirts

An open and collaborative approach to better force fields


OpenFF is generating an enormous amount of quantum chemical data.

How do we maximize utility of this data to the community?

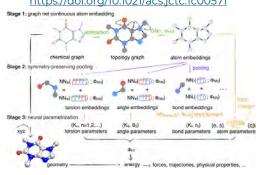
Biomolecular modeling is powered by quantum chemistry QM data powers a wide range of ML applications for bioscience


QM accuracy but 10⁶ times cheaper

A DFT ANI-1 RMSE: 1.8 kcal/mol ... A

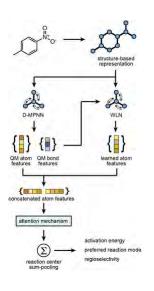
ANI-1x https://doi.org/10.1039/C6SC05720A

fast machine learning



TorchMD-Net https://arxiv.org/abs/2012.12106

ultra-fast molecular mechanics potentials for simulation



OpenFF 1.0.0 ("Parsley")
https://doi.org/10.1021/acs.jctc.1c00571

espaloma https://doi.org/10.1039/D2SC02739A

foundation/pretrained models for drug discovery

ml-QM-GNN

https://doi.org/10.1063/5.0079574

Expanding QCArchive is a collaborative effort

Open Force Field Consortium

Archive Molecular Sciences Software Institute (MolSSI)

OpenMM molecular simulation framework

TorchMDNet deep learning framework for molecular simulations (and other communities, e.g. SchNetPack, ANI, ...)

The MolSSI **Quantum Chemistry Archive**

A central source to compile, aggregate, query, and share quantum

GET STARTED!

FAIR Data

over ten million computations for the results as well. molecular sciences community.

Interactive Visualization

MoiSSI hosts the QCArchive server, the Not only for computing and storing largest publicly available collection of quantum chemistry computations at scale, quantum chemistry data. So far, it stores but also for visualizing and understanding

Private Instances

The infrastructure behind QCArchive is fully open-souce. Spin up your own instance to compute private data and share only with collaborators.

104,724,458

113,092,181

Search:

Add your Dataset License

	Name 1	Quality	Data Points	řę.	Elements	31	Sampling	$\dot{\mathcal{M}}$	Down	load
•	A Benchmark Data Set for Hydrogen Combustion	wB97X-V/cc-pVTZ	361,803		н 🙍		IRC, AIMD, and normal r simulations	mode	≜ H0)FS
±	ANI-1	DFT	22,057,374		С н 💌 🖸		NMS		▲ HDF5	≛ TEXT
#	ANI-1ccx	CCSD(T)*	489,571		С н 🔞 👩		MD,NMS,DS,TS		≜ HC	FS .
•	ANI-1x	DFT	4,956,005		C H N 0		MD,NMS,DS,TS		± HE	OF5
0	COMP6 ANI-MD	DFT	1,791		C H N D		MD 300K		▲ HDF5	≛ TEXT
0	COMP6 DrugBank	DFT	13,379		C H N 0		DNMS		▲ HDF5	≛ TEXT
0	COMP6 GDB10to13	DFT	47,670		C H N 0		DNMS		± HDF5	≜ TEXT
•	COMP6 GDB7to9	DFT	36,000		С н 🙀 🧧		DNMS		♣ HDF5	≛ TEXT
•	COMP6 S66x8	DFT	528		C H N 0		PES scan		♣ HDFS	▲ TEXT
0	COMP6 Tripeptides	DFT	1,984		C H N 0		DNMS		▲ HDF5	≛ TEXT
•	G-SchNet Generated	DFT	9,074		H F N 0		Minima		≜ HDF5	≛ TEXT
8	GDB13-T	HF, MP2	6,000	(0)	H [C] N [0]	iie.	MD 350K		± HDF5	≛ TEXT

Showing 1 to 12 of 23 entries

SPICE: A proof of concept foundation dataset

SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials

Peter Eastman¹, Pavan Kumar Behara², David L. Dotson³, Raimondas Galvelis⁴, John E. Herr⁵, Josh T. Horton⁶, Yuezhi Mao¹, John D. Chodera⁷, Benjamin P. Pritchard⁸, Yuanqing Wang^{7,10}, Gianni De Fabritiis^{4,9}, Thomas E. Markland¹

Subset	Molecules	Conformations	Atoms	Elements
Dipeptides	677	33850	26-60	H, C, N, O, S
Solvated Amino				
Acids	26	1300	79–96	H, C, N, O, S
				H, Li, C, N, O, F, Na, Mg, P, S, Cl, K, Ca,
DES370K Dimers	3490	345676	2-34	Br, I
DES370K Monomers	374	18700	3-22	H, C, N, O, F, P, S, Cl, Br, I
PubChem	14643	731856	3-50	H, C, N, O, F, P, S, Cl, Br, I
Ion Pairs	28	1426	2	Li, F, Na, Cl, K, Br, I
				H, Li, C, N, O, F, Na, Mg, P, S, Cl, K, Ca,
Total	19238	1132808	2-96	Br, I

Element	Charge	Instances
Н	0	1594
Li	1	3531
С	-1	5899
С	0	12545137
С	1	1800
N	-1	11642
N	0	2231039
N	1	114621
0	-1	81548
0	0	2235856
0	1	1500
F	-1	4033
F	0	376898
Na	1	6536

Element	Charge	Instances		
Mg	2	1488		
P	0	41528		
Р	1	750		
S	-1	3350		
S	0	512526		
S	1	3945		
Cl	-1	7622		
Cl	0	246165		
K	1	6704		
Ca	2	1587		
Br	-1	4276		
Br	0	87927		
I	-1	4344		
I	0	21908		

DFT ωB97M-D3(BJ)/def2-TZVPPD level of theory (among others)

>4M core-hours computed on **QCFractal** academic clusters

https://arxiv.org/abs/2209.10702

We are taking the first steps toward an ML model repository to easily deploy to users!

Install the OpenMM 8 beta and our interface to the ML model repository via conda

```
$ conda env create mmh/openmm-8-beta-linux
```

Check out the ANI-2x ML model to run a simulation!

```
from openmmml import MLPotential
potential = MLPotential('ani2x')
system = potential.createSystem(topology)
```

Or run a hybrid simulation:

```
forcefield = ForceField('amber14-all.xml', 'amber14/tip3pfb.xml')
mm_system = forcefield.createSystem(topology)
chains = list(topology.chains())
ml_atoms = [atom.index for atom in chains[1].atoms()]
potential = MLPotential('ani2x')
ml_system = potential.createMixedSystem(topology, mm_system, ml_atoms)
```


Acknowledgments

...with *much more* to come!

Peter Eastman¹, Pavan Kumar Behara², David L. Dotson³, Raimondas Galvelis⁴, John E. Herr⁵, Josh T. Horton⁶, Yuezhi Mao¹, John D. Chodera⁷, Benjamin P. Pritchard⁸, Yuanqing Wang^{7,10}, Gianni De Fabritiis^{4,9}, Thomas E. Markland¹

¹Department of Chemistry, Stanford University, Stanford, CA 94305, USA

²Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA

³The Open Force Field Initiative, Open Molecular Software Foundation, Davis, CA 95616, USA

⁴Acellera Labs, Doctor Trueta 183, 08005, Barcelona, Spain

⁵Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA

⁶School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom

⁷Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY

10065, USA

 8Molecular Sciences Software Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
 9Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Carrer Dr. Aiguader 88, 08003, Barcelona, Spain and ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain.

¹⁰Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA

