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Workshop Description 
Artificial intelligence (AI) and machine learning (ML) are advancing rapidly and in use across 
many industries, including biomedical research and healthcare delivery. For this full-day public 
workshop, NIH brought together leaders in innovation and science to explore the opportunities 
for AI and ML to accelerate medical advances from biomedical research. Workshop participants 
heard from leading industry experts and scientists who are employing AI/ML in biomedical 
research settings. Speakers covered a range of issues, including the promise of integrating AI 
technology into healthcare, how it is being used in biomedical research, and its potential for 
enhancing clinical care and scientific discovery. Craig Mundie, who served on the President’s 
Council of Advisors on Science and Technology (PCAST) and was formerly Microsoft’s Chief 
Research Strategy Officer, delivered the keynote address. 
 
Access to the videocast of this meeting can be found at the following link: 
https://videocast.nih.gov/summary.asp?live=28053&bhcp=1. Discussions on Twitter can be 
found using the hashtag #2018biomedAI. 
 
The content of the presentations summarized in this report represents the views of the presenters 
and are based on their own work, experiences, and opinions.  
  
Executive Summary 
Convened to discuss AI and ML in biomedical research, the attendees of this workshop explored 
how these technologies currently are used in biomedical research, ways to expand their use, and 
how to leverage existing resources to improve collaborations and networks. Keynote speaker 
Mr. Craig Mundie explored the ways in which mankind and machines can work together to 
advance biomedical research. He questioned whether the amount of biomedical data should be 
limited to only critical information, not expanded to collect all the data possibly available. He 
proposed the use of gaming methodologies to interrogate discrete biomedical data and 
competitions to provide incentive for people to participate in biomedical ML endeavors. With the 
use of AI, the paradigm of studying a population to understand what is occurring in an individual 
may be upended, shifting to the collection of individual data to create a composite for population 
data.  
 
Other speakers addressed data sharing, which is a limitation for use of ML in biomedical 
research. A significant amount of data is needed for ML, but data sharing is currently not 
properly incentivized. Efforts to address improved data sharing were discussed.  
 
ML has been used to make significant advancements in radiology and imaging. These 
advancements have reduced the time needed to annotate data and allowed expanded use; thus, 
more and richer data are available. Future advancements in use of AI in radiology include 
expanded personalized medicine, increased integration of radiological data with other data, and 
expanded use of radiology to improve global health. 
 
AI is expanding into the realm of in-home patient monitoring through wireless technology. The 
advancements in this area were discussed, as well as the challenges with integrating this new 
type of data with existing data. AI has also been used to connect patients with clinical trials more 
efficiently using technologies like natural language processing (NLP). ML can be used to assist 

https://videocast.nih.gov/summary.asp?live=28053&bhcp=1
https://twitter.com/hashtag/2018biomedAI?src=hash
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in protocol trial design and has been used to perform predictive modeling of human disease 
states. ML can be used to review genetic variants in individuals in a specific cell type to 
understand a particular disease, such as Alzheimer’s disease, and to understand the regulatory 
code of genomic control elements with a level of complexity not possible by human analysis.  
 
Lastly, attendees discussed challenges and opportunities in this field. Challenges include 
recruiting the correct expertise to participate in biomedical research and fostering ways to 
improve collaboration and networking among scientists from the different fields. Training 
materials to facilitate collaborators’ basic understandings of each other’s fields—for example, 
clinical research, genetics, or computer science—are also lacking. Significant challenges were 
noted with respect to data, including data sharing, data harmonization, and issues related to data 
in electronic medical records. Challenges related to current methods were also discussed. 
Opportunities were noted within these same areas, including the expanding access to training 
materials, existing ML framework models that can be leveraged for future research, and 
opportunities that NIH might consider to foster AI and ML in biomedical research. 
 
Promising future aspects of AI include the interpretation of information with complex structure, 
improvement of images, and assemblage of new data types. Combining medical imaging with 
genomic data and clinical test results will provide insights not allowed by analysis of data in 
isolation, and using AI in this space could ultimately lead to new types of therapy. 
 
Introductory Remarks by the NIH Director 
Francis Collins, M.D., Ph.D. 
 
The advent of AI and ML, big data, cloud computing, and robotics may represent the Fourth 
Industrial Revolution. One of the initial hallmarks in this area was the Human Genome Project, 
which spanned 1990 to 2003 and resulted in one of the first large data sets intended to study the 
genome. The outcome of this project spawned several other NIH initiatives that combined 
biology and information science to study and interpret the data: Examples include The Cancer 
Genome Atlas (TCGA), the Human Epigenome Atlas, and the International HapMap Project.  
 
One example of a large biomedical data set is the NIH Human Microbiome Project, which 
generates resources for the comprehensive characterization of the microbiome and the analysis of 
its role in health in disease. Over the last 10 years, this project has resulted in one of the major 
advances of our time by providing new insights into health and disease. Phase 1 was 5 years 
long, ended in 2013, and characterized microbial communities from 300 individuals across 
several body sites. It generated large data sets, with more than 14 TB of publicly available 
information. Phase 2, which began in 2014 and is ongoing, is integrative and focuses on specific 
health and disease areas, including pregnancy and preterm birth, irritable bowel disease, and 
prediabetes. 
 
The All of Us Research Program, through the Precision Medicine Initiative, is another example 
of a large data set and aims to enroll 1 million participants; it officially launched on May 6, 2018. 
Participants will vary in lifestyle, socioeconomic status, environment, and biology. The resulting 
data set will provide access to an unprecedented number of variables, such as environmental, 

https://hmpdacc.org/


4 
 

social, behavioral, and biological/clinical information, enabled through the informed consent of 
participants. There is opportunity for AI and ML to foster discovery in this program. 
 
For this workshop report, the definitions of AI, ML, and deep learning (DL) are framed as 
follow: 
 

● AI: A larger umbrella of computer intelligence; a program that can sense, reason, act, and 
adapt 

● ML: A type of AI that uses algorithms whose performance improves as they are exposed 
to more data over time 

● DL: A subset of ML in which multilayered neural networks learn from vast amounts of 
data 

 
Clinical applications of AI, ML, and DL include imaging (e.g., pathology diagnostics), 
diagnostics in dermatology or ophthalmology, radiology, cancer treatment, robotic surgery, and 
NLP of electronic medical record (EMR) data. Basic science applications include interpretation 
of imaging, neuroscience (e.g., the Brain Research through Advancing Innovative 
Neurotechnologies® [BRAIN] Initiative), genomic analyses (e.g., variants, risk of disease, gene 
structure), microbiome/metagenomics (e.g., multiorganism study), and epigenomics (e.g., histone 
marks, TF binding, enhancers, DNA methylation). A recently published paper, which Dr. Collins 
co-authored, discussed technology that accurately predicted DNA methylation values in whole-
genome sequencing of multiple human tissues.  
 
NIH Institutes and Centers currently invested in AI and ML include the National Institute of 
Biomedical Imaging and Bioengineering, the National Institute of General Medical Sciences, the 
National Library of Medicine (NLM), and the National Human Genome Research Institute, 
among many others. Currently, 667 active NIH research projects (for a total of $377 million) in 
the NIH RePORTER mention AI, ML, or DL.  
 
The data science landscape at NIH is already rich and continues to expand. Large data sets being 
produced include the Genotype-Tissue Expression Project (200 TB), the Genomic Data 
Commons/TCGA (>4 PB), the Trans-Omics for Precision Medicine Project (approaching 
15 PB), and the short-read archive and the database of Genotypes and Phenotypes (15 PB). 
Another NIH effort is the intramural Biowulf NIH super computer, which is number 88 among 
the 100 most powerful computers in the world and the first devoted strictly to biomedical 
applications.  
 
Efforts in the data science space are ongoing to address challenges and create new opportunities. 
Many researchers invest a significant amount of time in accessing the data and making it 
analyzable; this aspect needs improvement. NIH Data Commons is establishing best practices to 
work with different data sets across cloud environments. NIH is also working with cloud 
providers to establish cost-effective deals for both intramural and extramural NIH staff and 
grantees. NIH leaders and experts must determine where limitations exist, whether in hardware 
or architecture. Recently, NIH released a Strategic Plan for Data Science to maximize the value 
of data generated through NIH-funded research. 
 

https://projectreporter.nih.gov/reporter.cfm
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NIH should find a balance between a bottom-up approach (which is the current predominant 
approach) and some form of top-down approach to encourage collective collaborative 
engagement, such as consortia, which has not been applied in this space. Incentives and shared 
resources could be employed. 
 
Keynote Address: Mankind and Machines—Learning to Understand Human 
Biology, Together 
Craig Mundie, President, Mundie & Associates 
 
Previous societal evolutions were about 100 years apart until the computing revolution. 
Computing is changing society more rapidly, and it is harder to adapt. The evolution of 
computing has seen significant changes in architecture, such as tensor flow, and it is important to 
recognize and anticipate these changes. When considering advancements, we must be mindful of 
what will provide the most capacity. In the next 10 to 20 years, quantum machines will be part of 
the landscape, and it will be important to prepare and think about how this technology can be 
incorporated.  
 
Machine intelligence has seen an evolution similar to that of computing. The advent of big data 
occurred outside the realm of biomedicine and was incorporated separately into biomedical 
fields. Big data sets, causal learning, and transfer learning are important for artificial general 
intelligence (AGI), but in some cases big machines are needed, but not big data. When AGI will 
be widespread is still up for question, but most prognostications about computer-driven 
advancement timelines have been inaccurate. 
 
On the biomedical side, electronic data started first with EMRs and then arrived in other areas, 
such as imaging. People have worked hard to find ways to integrate EMR data, but Mr. Mundie 
is not convinced those are the correct data. He also acknowledged the importance of genome and 
proteome data but is less convinced of the importance of other “-omics.” Other types of 
computing technologies that are currently coming from physicists but will be used in biomedical 
science include the following: 
 

● Bayesian networks and inference 
● Pearl-esque probabilistic causal learning 
● Monte Carlo simulation and tree search 
● Hypothesis-free, unsupervised DL 
● High-scale modeling for prediction and forward simulation 
● Quantum-inspired optimizations, including sampling, minimization, and training neural 

networks 
 
Last fall, while performing an evaluation of candidate analytical tool sets, researchers 
inadvertently left off the metadata and reviewed only the raw proteomic data. The tool found an 
appropriate explanation that was simpler than what was currently known. Adding the metadata 
revealed a suitable answer that included the other answer, but the pathway was more convoluted. 
This suggests that scientists should have tools to allow the molecular data to speak for itself. This 
happened around the same time that Google’s AlphaGo Zero results were published. In AlphaGo 
Zero, the group used tabular learning with no human data, examples, or interventions. It 
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recognized and rediscovered patterns. As it advanced, it understood information in current 
human knowledge and beyond. This approach can be applied in other places to discover new 
knowledge. In another recent example, a group at the University of California, Irvine enabled a 
computer to solve a Rubik’s cube without human help based on Monte Carlo tree search 
techniques. Earlier this year, OpenAI was created as a way to develop an AI platform; it was a 
massive multiplayer online simulation and strategy game that used 256 GPUs and 128,000 CPU 
cores. In August, another team created a bot to play Dota 2, a multiplayer online game that 
involves international tournaments with professional players. The bot learned by playing a 
version of itself, and it has beaten professional players in one-on-one scenarios and will play in a 
multiplayer tournament. Professional players were interested in playing against the bot to train 
themselves. A similar scheme could be used in biological research. 
 
Are machines here to help us, or is it our job to help machines? A recent Harvard Business 
Review article posited two tenets that may not be true: that humans must train machines and that 
humans must explain the outcomes of the tasks. Computers should be allowed to come up with 
the answer. Perhaps, instead, humans should be trained by machines, as in the case of Dota 2 
players training against the bot.  
 
People are interested in prescience about their own health. When applied, analysis of 
personalized biological data, including genomic and proteomic data, can help better identify the 
timeline and characteristics of human cancers. The future of medicine will likely start with 
individual data and personalized approaches, then synthesize cumulative information to establish 
trends for the population, not the other way around. 
 
While some believe that it is best to collect as much data and data types as possible, it may be 
preferable to define and isolate the most useful data. What data are useful may well depend on 
the question being asked. A game platform could allow AI evolution to determine the relevant 
data. Some data may also be more accessible due to lack of privacy issues. 
 
Life can be considered a tournament of multiplayer games, where winning is getting the most 
people to have the longest, highest-quality existence. Each game is unique. Players include 
Mother Nature, the environment, humans, and the bots helping humans. In this analogy, the 
genome is the rulebook, and the game board is a fixed 2D array of lots full of proteins. Humans 
can implement different elements of AI to biomedicine to help play the game. 
 
Mr. Mundie provided answers to the questions that he posited at the beginning of his talk: 
 

● Is human biology too complicated for humans to figure out? Yes. 
● We are getting more data, but do we know how to map it and understand it? Not really. 
● If it is too hard for humans, what about for machines? Looks possible, even likely. 
● If they could figure it out, could they explain it to us in a useful way? Unlikely. 
● How is that valuable? In limited ways during the early stages, as a part of “unit testing” 

and to build confidence. 
● How would you go about it? Use rapidly evolving computing advances with genomic and 

longitudinal proteomic assay to build a gaming platform for “the game of life.” 
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● How would it be different from current efforts? Discard the existing history of pathways 
and interventions and focus on personalized data to understand the population. 

 
Researchers should act like gamers, using machines to improve their understanding and skill. 
Giving people a common toolkit and allowing competition is how many companies were started, 
and it might work for AI in biomedicine. Ultimately, humans will trust—rather than 
understand—what machines do, just as they do with the current computerized infrastructure in 
their lives. 
 
Using AI will likely permit experimentation to be conducted at a lower cost and higher speed 
with powerful technology to study biological systems. Planning would require balancing 
investment and policy tradeoffs at a societal scale. The purity of data is important, which is the 
primary reason that EMR data are so challenging to use. Mr. Mundie believes that, ultimately, 
molecular data are more important. With AI, we can emphasize wellness and prevention over 
intervention and reduce healthcare costs. Machines might be able to decide which -omics provide 
the best answers to guide health care.  
 
Current challenges include complexity in programs, systems, and networks, as well as physical 
and virtual interconnections. Emergent behaviors of hyperscale networks cannot yet be 
predicted. Approaches that help address these challenges include unit testing, formal 
specifications, and composability to help computers reason through the correctness of designs. 
Randomized controlled trials (RCTs) are still necessary, because while AI may be able to 
determine correlations, it cannot yet determine causation. Prospective data will likely be required 
for many years; a model never contains all the variables. 
 
Building the game-of-life platform may be the next research grand challenge. 
 
Applications of ML, AI, and DL in the Clinic and Community 
 
Data Sharing  
David Heckerman, M.D., Amazon (formerly Microsoft)  
 
Unlike algorithms in AI that are an openly shared commodity, some biomedical data that would 
benefit from analyses with AI/ML are not always readily available. Data is at the heart of AI and 
ML, so it is important to expand it as a resource to continue innovation. There is not a lack of 
data; rather, some groups that own large amounts of data choose not to share it. It is important to 
understand why data are not shared and to determine ways to incentivize data sharing. Although 
some people say that data are not shared due to issues of legality and privacy, this can be 
overcome and is not a significant barrier to sharing. For example, 23andMe asked customers to 
share their data for research, and 80 percent of them agreed.  
 
The motivations for a lack of data sharing affect different groups in different, but significant, 
ways: 
 

● Doctors in private practice spend their careers collecting patient data and contact lists, 
which they sell for revenue, and they have come to rely on this money source. 
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● Researchers are under pressure to be productive to secure tenure and funding. They are 
likely to keep their collected data for fear that they might lose credit if the data were 
shared. 

● Institutions seek the notoriety and positive public image of exclusive breakthroughs, as 
opposed to sharing credit with numerous other entities. 

 
A Blue Ribbon Panel on Enhanced Data Sharing from a Cancer Moonshot SM Taskforce crafted a 
report of recommendations to motivate groups to provide early data availability. 
 
Researchers can be encouraged to share data by—  
 

● Giving more credit for data generation, curation, and analysis. This can include positive 
scoring during grant review, an s-index (for sharing) similar to the h-index as part of the 
grant evaluation process, and encouraging journals to publish separate author lists (as 
Science does). 

● Implementing an NIH approval process for data sharing plans. NIH grant mechanisms 
currently include a data sharing requirement designed to incentivize sharing.  

● Implementing stage gates within funding with a “no sharing, no payment” policy for 
continued funding. 

 
Insurers’ data and clinical laboratory tests can be made widely available by— 
 

● Making data sharing a requirement for reimbursement, laboratory accreditation, or the 
streamlined review of laboratory test approvals 

● Discouraging institutional review boards from introducing unintentional constraints for 
participants 

● Encouraging payers to share data, which laboratory companies currently are more likely 
to do 

 
Patient data sharing can be improved by— 
 

● Requiring researchers to provide patients with their results in plain language 
● Expanding the Genetic Information Nondiscrimination Act of 2008 to life insurance 
● Providing standard consents for multiple situations to allow familiarization 
● Giving patients ownership of their own data  

 
Data owners could consider creating a marketplace in which metadata is available and can be 
searched by interested parties. A party interested in the actual data could purchase it through the 
market. In this scenario, all participants sign the same legal agreement, and the participating 
groups provide governance. In this scenario, if a group is afraid of missing opportunities from 
their data, they can increase its price. 
 
In-Home Noninvasive Patient Monitoring 
Dina Katabi, Ph.D., MIT Center for Wireless Networks and Mobile Computing  
 

https://datascience.nih.gov/sites/default/files/BRPEDSPolicyDocument.20170117_508.pdf
https://datascience.nih.gov/sites/default/files/BRPEDSPolicyDocument.20170117_508.pdf
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In-home wireless health monitoring technology that does not require people to wear any sensors 
or change their lifestyle is being created and can alert a caregivers if there is an emergency. 
Currently, home monitoring is difficult and, for some conditions, reliant on patient diaries. The 
new Wi-Fi device monitors breathing, sleep, heart rate, and gait speed through DL and the 
detection of electromagnetic fields. 
 
A person’s movement can be tracked in three dimensions to monitor falls. Gait speed is a health 
indicator for a variety of conditions: It is an endpoint for Parkinson’s disease and multiple 
sclerosis, a predictor for exacerbations of congestive heart failure and chronic obstructive 
pulmonary disease, and a surrogate marker for cognitive impairment. Use of this device would 
allow full-time monitoring. Other advantages to monitoring movement include tracking toilet 
use, eating, and socialization behaviors. The range for detecting motion is approximately 40 feet.  
 
Monitoring sleep is important for detecting sleep disorders and a variety of diseases. The device 
monitors brain wave changes similar to the monitoring done currently, but without the need for 
excessive nodes and wires that make sleep studies uncomfortable and may affect the results. 
Through machine learning, the device monitors sleep phases with an accuracy rate of 80 percent 
(similar to the 83 percent accuracy of sleep technicians reading patients’ results). 
 
The technology can also monitor breathing with 97 percent accuracy, compared with a chest 
band. The device is so sensitive that within the breathing pattern data, it can detect heartbeats. 
The range for detecting breathing and heart rate is around 13 feet. The device can also monitor 
two people in the same vicinity separately, and it can distinguish humans from pets. Although 
the technology can distinguish between people, it is not currently designed to work for a large 
number of people in a small space. Currently, most of the focus of this technology is supervised 
learning, but it does perform transfer learning to train the device in the laboratory and test it in 
the home. 
 
With regard to concerns about security and privacy, participants consent to the use of the device, 
and identifiable information is stored separately from monitoring data; both are encrypted. The 
device has been designed to ensure that it cannot be used on someone without his or her consent, 
using instructional parameters at the time of setup. 
 
Training for wireless in-home technology occurs in the laboratory, using small amounts of home 
data to facilitate transfer learning. People have not collected a lot of data from the home, so 
interpretation is still new, as is comparing that data to traditional clinical assessments. 
Laboratory data and data from homes are distinct. Wearables and invisibles can be used together 
to provide stronger types of data and information for improvement in care and to expand 
research, as the wireless device can only be used in the home, and the data from wearables tends 
to lack context.  
 
Use of DL and AI in Radiology 
Ronald Summers, M.D., Ph.D., NIH Clinical Center 
 
Before 2012, there were a plethora of automated systems to detect abnormalities that relied on 
humans to annotate and measure the data. DL has helped solve intractable problems in the 
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classifier stage of image processing in radiology. Researchers have learned that handcrafted 
features (shape and thickness) are less important and that large data sets are more informative. 
As a result, more people can contribute to the field in a variety of ways, allowing a data 
democratization that has increased progress. Since 2017, there has been a profound increase in 
DL studies, of which 9 percent are in radiology. DL and ML have improved prediction of 
disease, although there are few examples of this in radiology compared with prediction by a 
trained physician.  
 
DL has enabled accurate detection of pancreas segmentation in a way that was not possible 
before. There have been competitive challenges by professional societies to determine whether a 
cancer is malignant or benign; the winners used DL. Prediction of colon inflammation through 
ML has been successful. 
 
Body-part recognition is also possible with ML. Segmentation labels can annotate representative 
areas that propagate through the entire data set. Diseases and conditions studied with this 
technology include muscular dystrophy, sarcopenia, obesity, and tumor growth, among others. 
 
DL systems in the imaging and computer vision community are more tolerant of human error in 
labeling, or “noisy” labels. It is difficult to get a solid reference standard, so consensus points are 
used. Feedback loops of correction and refinement are used in some projects, such as a polyp 
detection project, to improve system performance. 
 
Combining data mining reports and images can teach computers to read images to identify body 
parts and metastases. The identification improves with more descriptors. One complaint about 
ML is that the rationale for the decision that the computer makes is not clear, but people are 
creating saliency maps to provide context. ML for chest x-rays used eight terms with accuracy as 
high as 99 percent for large organs, but it did not work as well for identification of small nodules. 
Attempts to generate automated radiology reports from data are sometimes successful. Other 
data sets, such as a collection of measured and classified CT scans, allow sophisticated queries 
and attempts to detect lesions. Another system, Auto RECIST, is an automated lesion-measuring 
system with accuracy similar to that of expert radiologists.  
 
Lymph node CT data sets, pancreas segmentation data, chest x-ray data, and a deep-lesion data 
set with more than 30,000 diverse CT scan images that are measured and classified are publicly 
available. Data sets like the CT scan set include a band of normal tissue around the lesion. 
Release of the entire CT scan was limited by data storage restrictions. 
 
Images required in routine clinical practice are used to develop new labels with ML. A large 
number of clinical data scans that are not analyzed for aspects like body composition analysis are 
available. There is an opportunity to extract more information from existing data.  
 
The future of ML/DL and radiology might include the following: 
 

● New discoveries benefiting individual patients and populations of patients 
● Routine integration of radiology with other clinical data 
● Improvements in triaging and critical result monitoring 
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● Expansion of radiology imaging for global health 
● More automation and quantitation  

 
Artificial Intelligence and Machine Learning in Biomedical Research 
 
Machine Learning Applications in Pediatrics 
Judith Dexheimer, Ph.D., University of Cincinnati  
 
There are more than 300 EMR vendors in the United States that hold patient population data, and 
most hospitals use EMRs. There is a tremendous amount of data in EMRs, and it is increasing 
with the inclusion of data from wearables, extra laboratory visit data, and patient comments. It is 
a potentially rich source for research and data mining, but up to 80 percent of it is unstructured. 
Quantitative or structured data include such information as vital signs, whereas qualitative or 
unstructured data include such documents as scanned clinical notes.  
 
In the field of informatics, the person is augmented, not replaced, by the computer. Data are 
complex, and professional judgment will continue to be vital to shaping care. Capturing the data 
to enable patient care is important, but the systems are considered user friendly compared with 
other interfaces. In contrast to Instagram, which has one user type, EMRs must account for more 
than 100 types of users. There are also more numerous and complex types of data in EMRs. The 
features must be different, and there are more significant requirements for privacy, safety, and 
compliance. 
 
NLP, a type of ML that attempts to train computers on natural languages, is used as a primer to 
create a data set and train a model (with supervision) to make a prediction. Challenges include 
syntactic ambiguity, speech patterns, negation, and data cleanliness. Some successes in NLP 
include NLM’s MetaMap and the Clinical Text Analysis Knowledge Extraction System. 
Remaining challenges include lack of access to shared data, lack of annotated data and standards 
for annotations, lack of real-time implementation, and issues with data quality. 
 
Pediatrics has distinct challenges due to variability based on development that must be taken into 
account and to differences in delivery of care. Caregivers also frequently perform treatments, and 
there are multiple historians for a medical history. Use of ML in monitoring sepsis during a 
pediatric intensive care unit transfer and monitoring appendicitis has increased, but ML is used 
less in pediatrics than in adult medicine. Main areas to apply ML include healthcare decision 
support (e.g., real-time patient identification for research studies in emergency department 
settings, patient surgery cancellation detection to help providers and hospitals), provider decision 
support, and integration of NLP with patient encounters. 
 
NLP has been used for provider decision support to differentiate between intractable and 
tractable disease in epilepsy. Those patients who do not appear to respond to medications are 
eligible for a surgical consult. Using NLP to extract information from doctors’ notes, researchers 
were able to develop a classifier that identified patients for a consult earlier than without ML. 
 
NLP has also been used to monitor patient interactions and make predictions about a risk of 
suicide through verbal and nonverbal markers. This could be a way to identify people who might 
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be susceptible and who are not displaying obvious risk characteristics. In this case, audio data 
and video data of a patient–participant interaction were transcribed and annotated to train a 
classifier on text and linguistic features. Researchers are currently implementing this effort in the 
Cincinnati public schools through use of an iPhone app and counselor interviews of students to 
create a risk score. This study is still ongoing.  
 
The future of this area of research likely includes NLP systems that are fully integrated with 
EMRs, real-time identification of patients with less processing time, smarter search algorithms, 
integration of information from multiple sources, and synthetic data. Voice-to-text software 
currently lacks accuracy, likely due to ambient background noise and because people do not 
speak the way they take notes.  
 
Many ML models allow researchers to design trials more efficiently. RCT inclusion and 
exclusion criteria are intended to minimize variability, which may be good to avoid confounders 
but may limit the trials’ relevance to the general population. Adjunct technologies help determine 
a balance. Simulation of clinical trials is meant to determine maximum efficiency and not replace 
RCTs. 
 
AI for Healthcare Research: Next-Generation Healthcare 
Eileen Koski, IBM Research 
 
To some, it is not a question of whether data are good or bad, but rather what the data are good 
for. EMR data answer different questions to help understand health behaviors. AI in healthcare 
research is the convergence of three major drivers: need, data, and innovation. Healthcare costs 
are unsustainable, yet outcomes need to improve. EMRs contain a critical mass of rich health 
data, and major advances in data science allow handling of complex, diverse data at scale with 
progress toward multitask, multidomain, continuously adapting intelligence.  
 
Opportunities with data include the ability to accrue real-world, population-level data in the form 
of images; -omics; and voice, test, sensor/device, video, patient-generated, social, environmental, 
and behavioral information. New types of data are consistently emerging. 
 
There are many challenges for data, including access, privacy, security, scale, heterogeneity, 
semantic interoperability, harmonization, and data literacy. The concept of perfect data is a myth; 
instead, the focus is on understanding the optimal use of different data sets. The intent of the data 
and how it was created matter. In order to make a clinical decision based on data, one must be 
able to understand it and its intent. 
 
IBM Research is involved in technology advancement in the fields of computational health, 
computational biology, devices, and technology at the intersection between life sciences and 
health care. Patient compliance is another frontier to empower patients toward positive 
behavioral changes. The four pillars of research at the MIT-IBM Watson AI Lab include AI 
algorithms (learning and reasoning), the physics of AI (analog AI and quantum computing), 
applications of AI to industries (health care and security), and advancing shared prosperity 
through AI (ethics and broad economic prosperity). 
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IBM has performed analytics on patient similarities to design precision cohorts. Patients who are 
similar in a clinically meaningful way can be used as a metric for ML and to guide treatment. It 
will be important to accurately predict who will get a disease, whether current prophylactic 
interventions are helpful or necessary, and the timing of disease development. 
 
IBM has done predictive modeling in heart failure by working with healthcare centers to validate 
the data. Sometimes data are sparse, because a condition is rare or a procedure is unusual; it is 
important to apply the appropriate techniques and validate findings. Research with DL to predict 
occurrences of epileptic seizures is also ongoing.  
 
Disease progression modeling has been done for Huntington’s disease by using clinical fMRI 
and SNP data. IBM is exploring how to interpret the data to potentially predict the onset of 
symptoms. IBM has equipped a home with sensors to monitor the health and activity of patients 
with Parkinson’s disease. 
 
Another project, Psych-E, posits that speech is a virtual window to the mind. Asking even a 
benign question and analyzing the response can identify distinct speech patterns that may be 
diagnostic. This has shown to be promising in multiple languages and is not dependent on the 
content. This type of approach could be used in places like college health clinics, the college 
years being a common time for many affected people to have their first schizophrenic episode. 
Other programs are addressing healthcare access and helping doctors to practice better medicine. 
 
Other projects are looking at behavior in terms of wellness, including managing stress through 
the use of wearable devices and offering suggestions for behavior modification. Not everyone is 
ready to make behavioral changes at a specific time, so behavioral phenotyping is also under 
study. This will assist care providers with messaging to patients and improved support for both 
patients and physicians. 
 
Lastly, IBM is developing tools through its IBM Watson Health effort, which is developing 
products for people to purchase to assist with drug discovery, clinical trial matching, and many 
other matters.  
 
Deciphering Genome Function with Functional Genomics and Machine Learning 
Anshul Kundaje, Ph.D., Stanford University  
 
Since 2003, when the first draft sequence of the human genome was established, there has been a 
revolution in technology for sequencing and interpretation to enable scaling to population-level 
sequencing, enabling identification of disease-associated genetic variants. 
 
Most genetic variants are not harmful. Techniques such as genome-wide association studies 
(GWAS) allowed analysis of case-controlled studies to probe for variants that appear to associate 
strongly with a disease. One example is the identification of genetic variants in Alzheimer’s 
disease. While helpful, these data are not sufficient because they do not elucidate mechanisms. 
That is the purpose of functional genomics. 
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Humans have one genome, but many cell types with differing phenotypes. One approach to 
mapping includes the biochemical profiling of cell type–specific elements. Only 1.5 percent of 
the genome encodes for genes; the rest is composed of control elements that fine-tune gene 
expression. Researchers can use functional genomics to create a digital map of precise locations 
in the genome that are modified or affected by biochemical modification. Many biochemical 
markers can be studied in one experiment. Unlike images that can require 200 layers of 
convolutional neural networks, regulator sequence predictions require three to five layers. The 
number of layers needed is done by trying a specific range, measuring performance, and 
optimizing the model. The model can then be used on an independent test set.  
 
Two large projects, ENCODE and the NIH Roadmap Epigenomics Mapping Consortium, 
analyzed epigenomic data from hundreds of tissues and cell types, including 3 billion genetic 
coordinates and hundreds of biochemical measurements (e.g., chromatin modification). A 3D 
“data cube” is created that can be studied with ML probabilistic models and DL to identify 
tissue-specific control elements, learn the DNA sequence code of control elements, and interpret 
genetic variation. 
 
ML can be used to “walk” across the genome to look at patterns and combinations for tissue-
specific control elements. The combinations can be identified in latent states to infer how many 
control elements there are. Analysis predicts that there are 2 million control elements for 
20,000 genes. It not clear, however, how many are functional. The control elements can be 
mapped, but the dynamics for how they are regulated in different tissue types must be inferred. 
Expression data can start to fill in these gaps. For example, expression of the PAX5 gene in 
embryonic stem cells can be compared with other cell types. The data can be used to understand 
disease-associated genetic variation. This is particularly important, because 95 percent of 
complex disease-associated variants are in disrupted gene control elements. 
 
ML can be used to review genetic variants in individuals in a specific cell type to understand a 
disease, such as Alzheimer’s disease. Researchers initially reviewed the neuronal cells for 
genetic variants, but the genetic variants were enriched in microglial cells instead. Similar results 
suggest that there is a potential causal role for these cells to play in disease.  
 
ML can also be used to understand the regulatory code of genomic control elements. If DNA is 
considered as a language, the control elements can be words that dictate a part of the control, and 
together they create a grammar that is distinct in different cells types to enable differential gene 
control. Researchers are trying to understand how the combinations of words give rise to 
meaning.  
 
Patterns can be detected using the entire genetic sequence as input and defining the output as a 
biochemical marker. This creates a huge training set to use deep convolution neural networks to 
perform classification. In this model, there are no human-based assumptions about sequences’ 
properties. The model scans the sequence, establishes a pattern, and builds layers to learn more 
complexity. Sufficiently complex patterns can be established to predict activity for a given 
sequence. The model can predict the nucleotide residue biochemical profiles with high accuracy. 
It can also predict binding profiles with strong correlations. Cumulatively, this can be done for 
every biochemical marker in every cell type through multitask learning. 
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The patterns learned by ML are as interesting as the predictions. The model learned thousands of 
known and novel patterns defining the regulatory code of tissue-specific control elements. Rather 
than summarizing patterns, a user can study a specific control element and use the model to 
interpret the sequence elements that are driving the prediction. It is also possible to create a 
dynamic profile to assess each nucleotide in the control element for its relative contribution. For 
example, in two active cell types, it is possible to interpret the drivers in the sequence and 
compare differences. This can be done across hundreds of cell types and validated by 
experimental data. 
 
It is also possible to predict the molecular impact of genetic variants by simulating what would 
happen if part of the sequence were changed and seeing how that compares with other cell types. 
This had been done on a relatively large scale; scores can be created for variants based on their 
predicted significance for protein–DNA binding, allowing inference as to what the mutation is 
disrupting. Sometimes the variation or mutation can appear to affect binding in the same location 
as the variant, but sometimes it affects regions downstream of the mutation. In another example, 
one nucleotide mutation affects binding in the mutation region and binding downstream. In this 
way, researchers can analyze disease-associated variants and interpret their effects (e.g., for 
rheumatoid arthritis and multiple sclerosis). While GWAS cannot predict complex causal 
variants, this model can precisely predict a causal variant and how it is acting. Not all molecular 
effects are translated into disease effects. Large amounts of training data are needed, making it 
difficult to look for disease effects. 
 
Variation is both the power and the challenge of genomics. The background structure of the 
genome has vast effects on the penetrance of a variant and can result in significantly different 
phenotypes. It can be so powerful, in fact, that genomic structure can mask otherwise fatal 
phenotypes. Although the idea of game design is abstract, it would be implemented at the level 
of the individual and the data would be aggregated. The knowledge base would include the 
phenotypic expression of everyone as it played the game. The ML framework exists; it simply 
has not been applied in the biomedical realm. 
 
Fostering AI/ML in Biomedical Research at NIH 
 
Group Discussions  
 
NIH can and will play an important role in fostering AI/ML in biomedical research. Throughout 
the course of the workshop, speakers and attendees identified several barriers or challenges, as 
well as opportunities and existing resources. These are summarized here. 
 
Challenges 
 
Recruitment and training. Computer science has been fostered in factories and manufacturing. 
To accomplish a similar outcome in the biomedical sciences, there is a need for recruitment of 
promising computer scientists. NIH financial incentives are currently not competitive with other 
avenues for computer scientists. 
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Online ML training materials are inaccessible for biologists, and the reverse is also true. 
 
Communication and collaboration. Some networks in this field exist, although perhaps not to 
the extent that is needed. If new networks are built, it is important that they can grow to include 
diverse microcommunities with multidisciplinary participants. To expand use of AI and ML, it is 
important that NIH identify opportunities for public-private partnerships. Some specific areas of 
communication warrant attention. For example, there is not enough communication between 
statisticians and ML experts. Peer-to-peer collaboration between computer scientists and 
biomedical researchers is also needed. Improved communications across disciplines will advance 
AI/ML in biomedical science. 
 
Data. There is not enough biomedical data available for ML. Data sharing is a real and 
continuous problem that will affect enablement of AI and ML in biomedical research. We must 
understand the reasons data are not shared and incentivize sharing.  
 
Incentives for data harmonization are lacking. Data are not always standardized, because the 
way a variable is defined (e.g., the normal range for an assay result) can differ. In the case of 
molecular assays, they are changing rapidly, and it is complicated to harmonize data from 
different platforms. Researchers must upload and prepare data and manage those costs, which 
can render the work unaffordable. Getting data in and out is a significant barrier. Most large DL 
endeavors so far have used data from large consortia to avoid spending months cleaning data. 
ML and functional genomics data need to be harmonized, prioritized, imputed, and integrated. 
We can create data cubes but cannot yet scale to create one per individual. Gaining meaning is a 
challenge. Harmonization will allow a centralized version control that can trigger better ML. 
Researchers need a better experimental gold standard or better catalogs for causal elements and 
variants. NIH should define who devotes resources to finalizing data sets.  
 
Weaknesses related to EMR data exist. Some would like to see EMR data replaced with 
objective data; others note that EMR are a rich data source for specific information. Two 
weaknesses to EMRs were also mentioned: upcoding and treatment policies. In the former, a 
doctor will put in a code for a disease as a primary diagnosis over why the patient is in the office, 
because the doctor will make more money that way. This convolutes the data. For the latter, 
hospitalized patients with pre-existing conditions may get specialized treatment that improves 
outcomes, because the care regimen is more cautious. These are difficult challenges to overcome.  
 
There is a lack of failure data, particularly in drug development, which could be a drawback for 
training the models.  
 
NIH will need to bridge the gap between new technology and data and traditional data metrics 
and not overwhelm healthcare providers with excessive information. 
 
Methods. ML and functional genomics methods are currently modular and isolated. Researchers 
are just starting to build a model that translates control elements to gene expressions and then to 
disease phenotypes to create a link of models from variants to phenotypes, end to end. 
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There is room for improvement in interpretation methods. New methods are needed for 
quantifying the uncertainty of predictions and interpretation.  
 
AI and biases and inferences. Disparities, such as which patients show up for patient care and 
when, are inherent and exist before data are collected. In addition, some diseases 
disproportionally affect some populations, which can affect ML. In genomics, predictive models 
do not translate across different ancestry groups, and that diversification of data is important. 
 
Biases can be reinforced with ML. One ML algorithm to assess which criminals might reoffend 
once released took into account factors that created bias, such as race. 
 
ML approaches can make inferences with observational data but are sometimes wrong. There 
must be prospective analysis and randomization before a technology is embraced. Using ML as a 
complementary approach to human analyses and observations is still required. For example, a 
system for identifying breast cancer was used only as an initial screening. 
 
Opportunities 
 
Communication, collaboration, and engagement. Improving the understanding of other fields 
will increase appreciation for each expert’s contribution to AI in biomedical research. We need 
training resources for biological experts to understand practical statistics, ML, and data science, 
as well as similarly complementary resources for computational scientists to understand 
abstracted aspects of modeling for biological data. Collaborators of complementary expertise 
could be paired as part of a positive career trajectory. More flexible collaboration and career 
transitions between academia and industry would facilitate more participation. NIH should foster 
more active collaborations among key players, such as between statisticians, geneticists and 
genomicists, biophysicists, and computational scientists within biomedical science, or between 
practicing physicians, patients, statisticians, ML researchers, and experimental biologists. 
 
Gaming and prize competitions are good ways to engage AI and ML experts. 

 
Incentivizing high-quality software and models as high-value commodities in academia, beyond 
merely publications, would foster research. One example of ready-to-use ML models for 
genomics can be found at http://kipoi.org. This allows users to replicate procedures from the 
models with less code. Researchers should be encouraged to use models for predictions, 
retaining, fine tuning, combining, and ultimately contributing them to the research field. 

 
Training. Training opportunities and education foundations for this field are growing. There are 
many colleges working on ML in medicine. The annual American Medical Informatics 
Association (AMIA) Clinical Informatics Conference highlights advances. A basic 
understanding of writing code is needed, but DL does not require prior knowledge to do 
something useful.  
 
Suggestions for acquiring the requisite background include graduate-level summer school 
courses, Coursera courses, familiarity with AMIA, and biomedicine-based computational 

http://kipoi.org/
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prediction challenges with the data already harmonized. Most teams are multidisciplinary, so it is 
not necessary to be an expert biologist to participate. 

 
Data. NIH should encourage multi-institutional data collection to foster ML. Collaborations with 
groups like Kaiser Permanente would enable access to large amounts of data. Starting with 
emerging data is likely ideal, such as the All of Us Research Program. Incentives are needed to 
encourage data sharing. It would have to be clear to companies how their data sharing improves 
their business. 
 
NIH’s facilitation of computing and software in one location would accelerate research and help 
to avoid some of the lack of data harmonization that slows down research. Centralized locations 
and linking for data sets, software, and computation, like in the cloud, would allow conversion 
from “dry catalogs” to genomic knowledge bases that could allow smart searches, 
recommendations, and reasoning engines to empower discovery of relevant data sets. 
 
Promising future aspects of AI include interpretation of information with complex structure, 
improvement of images, and assemblage of new data types. Combining medical imaging with 
genomic data and clinical test results will provide insights not allowed by using the data in 
isolation.  
 
Methods. Frameworks and infrastructure for genomic ML already exist. Researchers build 
specific layers, or plug-ins, to adapt the framework to their needs. Efforts to build ways to 
rapidly transfer data into GPUs are ongoing. Modeling functional, large-scale interactions will 
provide more powerful models. Efforts to learn with less data should be considered. Public 
competition might establish more rigorous benchmarks and evaluation of models. 
 
Newer models are providing explanations for the AI determination, not just the answers.  
 
Soon models will become more precious than raw data. Creating model repositories will foster 
research and could include ready-to-use, trained models for regulatory genomics and other 
biomedical research efforts.  
 
Advisory support. NIH should consider convening an advisory committee with AI/ML experts 
to provide recommendations on how to proceed with encouraging AI and ML in biomedical 
research. The NIH Chief Data Strategist will be a leader within the NIH Office of the Director. 
 
Summary Remarks by the NIH Director 
Francis Collins, M.D., Ph.D.  
 
With regard to data sets, NIH should— 
 

● Prioritize data sets, including their harmonization and cleanup, to allow ML.  
● Enforce access to data from work that was supported by NIH. This is already NIH policy 

and is working well for genomic data. NIH is working on standards for other data types. 
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EMRs are an area of frustration, but they remain crucial for data related to medications, 
laboratories, diagnoses, and unstructured text. 
 
Current NIH programs and areas where NIH can integrate AI include the following: 
 

● BRAIN 2.0  
● The All of Us Research Program 
● Cancer genomics and therapeutics 
● Environmental Influences on Childhood Health and Outcomes Program 
● The Adolescent Brain Cognitive Development Study 
● Model organism databases 

 
Mechanisms that NIH might use to support AI include traditional R01s and other grant types, 
consortia and cooperative agreements, prizes, competitions, and games.  
 
With regard to hardware, architecture matters more than FP64s, exascale computers may not be 
the best answer for biomedical AI, and forward planning should be put in place for the next big 
advance: quantum computing. 
 
Needs related to training future researchers include the following: 
 

● A workforce for biomedical applications of this technology. 
● Expertise in AI/ML and biology; NIH should create environments for this training. 

Review of T32 structure may help determine whether NIH is providing the right training 
for AI/ML. 

● Defining and nurturing career paths. Traditional academic tenure track may not be the 
right approach. 

 
AMIA covers a segment of this growing community, but much of the biomedical AI/ML/DL 
community appears to be scattered. NIH should consider ways to foster and empower these 
researchers. Ideas to improve their support include— 
 

● Better reward systems, including giving credit for software beyond publications and 
adjusting grant and tenure/hiring review policies to account for their contributions 

● Nurturing more effective interactions and collaborations with statisticians, physicians, 
and basic scientists 

● Formation of a new professional society 
 
There is a continuing need to build the NIH “brain trust.” Recruiting talented people from Silicon 
Valley would provide more depth for AI expertise. Messaging is important to convey the 
opportunities to work on interesting and important health problems. There may be ways to 
encourage select individuals to spend time with NIH researchers to understand our work. NIH is 
searching for a Chief Data Strategist to lead this type of effort. Lastly, it will be important to 
convene a group of visionaries to continue today’s discussion; Dr. Collins is considering 
establishing a working group for the Advisory Council to the Director.  
 


	Contents
	Workshop Description
	Executive Summary
	Introductory Remarks by the NIH Director
	Keynote Address: Mankind and Machines—Learning to Understand Human Biology, Together
	Applications of ML, AI, and DL in the Clinic and Community
	Data Sharing
	In-Home Noninvasive Patient Monitoring
	Use of DL and AI in Radiology

	Artificial Intelligence and Machine Learning in Biomedical Research
	Machine Learning Applications in Pediatrics
	AI for Healthcare Research: Next-Generation Healthcare
	Deciphering Genome Function with Functional Genomics and Machine Learning

	Fostering AI/ML in Biomedical Research at NIH
	Challenges
	Opportunities

	Summary Remarks by the NIH Director

