Breakout Session 1: Track B

UniProt Knowledgebase to Enable AI/ML Readiness and Applications

Dr. Cathy Wu Professor and Director, Data Science Institute, University of Delaware

UniProt AI Readiness

https://www.uniprot.org/

NIH ODSS AI Supplement Program PI Meeting

NIH FY22 AI-Readiness program (3U24HG007822-09S2) UniProt - Protein sequence and function embeddings for AI/ML readiness MPIs: Alex Bateman & Cathy Wu

> March 27, 2024 Cathy Wu University of Delaware

Project Goals

- 1. Organize UniProt data to be Al-ready
 - Enable the community to harness AI/ML using UniProt data
- 2. Work with the community to advance AI-readiness and applications
 - Focus on useful problems through setting challenges
- 3. Al-driven innovation for UniProt resource development
 - Identify opportunities and new partners for collaborative development

Lack of well-curated data is a major barrier for AI Research

AI/ML-Readiness, Engagement & Innovation

- 1. Dissemination of AI/ML models/data (collaborator-generated)
 - Alphafold 2.0
 - ProtT5 sequence embeddings
- 2. AI/ML community engagement
 - Challenge evaluation CAFA-UniProt metal binding challenge
 - Community workshops to discuss AI/ML readiness and applications
- 3. Collaborative development with AI communities
 - ProtNLM language model for protein name and function prediction
 - OntoGPT for extracting structured information from text with Large Language Model (LLM)
 - Text mining and LLM for UniProt annotation

AI/ML Dissemination – AlphaFold

- Deep-learning based **AlphaFold 2.0** demonstrates atomic accuracy
- EMBL-EBI collaborated with **DeepMind** to release AlphaFold models and launched the AlphaFold Protein Structure Database in 2021
- UniProt has developed a process for making AlphaFold structures available from UniProt when the structures are released in the AlphaFold database
- Currently over 188 million UniProtKB proteins have AlphaFold 2.0 predictions

AI/ML Dissemination – Sequence Embedding

- Protein sequence embedding: Encode functional and structural properties of a protein from its sequence in a vector representation
- UniProt data ready for AI/ML via sequence embedding: Save community compute and enable the community to harness AI/ML
- Provide a generic framework for a wide range of AI/ML tasks
- Precomputed UniProtKB datasets
- User-tailored datasets through website (e.g., all proteins with structure from PDB, all bacteria)

Model developed by Burkhard Rost lab at Technical University of Munich

Community Engagement – CAFA-UniProt Challenge

		Dataset prep and k	ick off	Challenge closed		Evaluation results sent
CAFA - UniProt Metal B Project SynID: syn50209128 0	January 2		3	May 2023	•	
🜐 Wiki 💿 📄 Files 💿	Discussion ③	July 2022 Sເ	ubmission plat	February 2023	Evaluation	September 2023
CAFA - UniProt Metal Binding Challenge ~ How to Participate > Training & Target Datasets How to validate your predictions file? Submission Rules and Format	CAFA - UniProt Metal Bindi Registration open	ing Challenge	Evaluat • Met • 17 r • High	cion al Binding Challe egistered partici n false positives	enge hoste ipants in the sub	ed on Synapse missions
Data Sharing, Anonymity, and Withdrawal News & Updates <<	Challenge Description Challenge start date: July 1, 2022 Prediction Submission Deadline: February 28, 2023 Evaluation: July 2023 (Anticipated)		Next st • Hos part	eps t challenge on K icipants and dat	aggle to a [.] a scientist	ttract more ts
			• Leve	erage CAFA expe	ertise and	frameworks

Community Engagement - UniProt Al Workshop

Provider of useful AI-ready datasets and embeddings to the community

User of AI methods that improve aspects of its functioning, e.g., functional annotation

Community Engagement Workshop, 2023

- Working with the community to advance Al-readiness and applications
 - Sharing advances of UniProt AI development
 - Learning ongoing AI development to be leveraged in UniProt
 - Understanding community needs through solicitation of use cases

ProtNLM Natural Language Models for Annotation

ProtNLM (Name predictions to uncharacterized proteins)

- Fine-tuned algorithm and improved naming in training data set better prediction quality
- 28,972,944 uncharacterized proteins have names from ProtNLM in UniProt 2024_01

ProtNLM (full UniProt predictions) - in progress

- Selection of prediction types (EC numbers, Function, etc.)
- Preliminary assessment of annotations
- Evidence strategy (e.g., compare with other annotations in entry and pHMMER alignments)

Collaboration with Lucy Colwell and Max Bileschi groups at Google Research (DeepMind)

https://ebrevdo.github.io/publication/gane-2022-az/

Future Work & Pilots: LLM in UniProt

Identification and review of relevant literature

Manual Curation

- To scan/summarize published papers with a focus on the gene of function interest
- To automatically identified which ones are adding "new information"
- To be used a co-pilot for curators writing scientific summaries (integrating information from multiple papers)

Automatic Annotation

- To summarize literature
- To "extract" relevant information to create annotation types (e.g., GO terms

LLM for Summarization and Term Extraction

Text Mining & LLMs for UniProt Annotation

- eMIND text mining pipeline to process all PubMed abstracts and extracts information on functional consequences of variants in Alzheimer's Disease (AD)
- Combine eMIND output with ChatGTP to write summaries and extract relations about the impact of AD-associated variants

doi: 10.1101/2023.09.07.556602 Collaboration with Vijay Shanker University of Delaware

Display of Results – Confidence Scoring

Disease & Variants			SUMMARY X		
Involvement in disease i Alzheimer disease 1 (AD1) Image: Solutions Note The disease is caused by variants affecting the gene represented in this entry Description A form of Alzheimer disease, a neurodegenerative disorder characterized by progressive dementia, loss of cognitive abilities, and deposition of fibrillar amyloid proteins as intraneuronal neurofibrillary tangles, extracellular amyloid plaques and vascular amyloid deposits. The major constituents of these plaques are neurotoxic amyloid-beta protein 40 and amyloid-beta protein 42, that are produced by the proteolysis of the transmembrane APP protein. The cytotoxic C-terminal fragments (CTFs) and the caspase-cleaved products, such as C31, are also implicated in neuronal death. It can be associated with cerebral amyloid angiopathy. Alzheimer disease can be associated with cerebral amyloid angiopathy. See also MIM:104300 C ²			LLM summary for the role of E693G mutation in APP The E693G mutation in the APP gene, also known as the Arctic mutation, is associated with Alzheimer's disease and leads to enhanced formation of amyloid-beta (Abeta) protribinis (11528419, 21880397). Carriers of the Arctic mutation exhibit decreased levels of Abeta42 and Abeta40 in plasma (11528419). The Arctic mutation causes amyloid deposition and cognitive dysfunction, similar to Alzheimer's disease, and can be studied using the TgAPParc mouse model (19329229). The Arctic mutation favors proamyloidogenic APP processing by increased beta-secretase cleavage, resulting in increased levels of Arctic Abeta, particularly at intracellular locations (17448150). Side the Arctic mutation disput intracellular amyloid deposits but not extracellular amyloid plaques (28825094). The Arctic mutation enhances sensitivity to toxic stress, contributing to the pathogenic pathway leading to Alzheimer's disease	Assign confidence score to output of text mining tools Using eMIND as a test tool to:	
UniProt Annotations Al-powered Summaries					
MUTATION E093G	IMPACT causes decreased Abeta42 and Abeta40 levels in plasma leads to dementia with clinical features similar to Alzheimer's disease is sufficient to cause amyloid deposition and cognitive dysfunction leads to dementia with clinical features similar to Alzheimer's disease favors proamyloidogenic APP processing by increased beta-secretase cleavage exhibits a purely cognitive phenotype that is typical of Alzheimer's disease decreases cell viability in human neuroblastoma cells and enhances sensitivity to toxic stress facilitates amyloid-β protofibril formation and generates clinical symptoms of Alzheimer's disease displays intracellular amyloid deposits but not plaques and has a relatively mild epilepsy phenotype attenuates APP-BACE-1 interactions not relevant in Asian population reduces the risk for Alzheimer's disease reduces the incidence rate of Alzheimer's disease	SOURCE (PMID) 11528419 19329229 19329229 21880397 17448150 28890319 12052536 22118948 26825094 26642089 23652020-24126161 28003277 24646423	 7. The Arctic mutation leads to distinct plaques and accumulation of truncated forms of amyloid-beta (22118948). 8. Tracers for amyloid-beta (122118948). 8. Tracers for amyloid-beta (122118948). 9. Tracers for amyloid-beta (122118948). 9. Tracers as a significant role in the pathology and neurodegeneration associated with Athenimer's disease. It leads to enhanced formation of amyloid-beta protofibris, amyloid deposition, cognitive dysfunction, and increased essitivity to toxic stress. The mutation also affects APP processing and the accumulation of truncated forms of amyloid-beta. Publications PMID: 28898051 Effect of Alzheimer Familial Chromosomal Mutations on the Amyloid Fibril Interaction with Different PET Tracers: Insight from Molecular Modeling Studies Balamurugan K, Murugan NA, Långström B, Nordberg A, Ågren H.ACS Chem Neurosci. 2017 Des. 	 a. Collect eMIND positive abstracts b. Ask LLM to answer what impact of mutation is c. Check with overlap with eMIND output 	
			doi: 10.1021/acschemneuro.7b00215. Epub 2017 Oct 3. PMID: 26825094 Increased Epileptiform EEG Activity and Decreased Seizure Threshold in		

Scalable framework for other text mining/relation extraction tools

UniProt Vision for Al

- Transformative Impact of AI: Enable the user community to harness AI using UniProt data
- Al approaches are being applied to many aspects of UniProt: Close collaboration with the Al research communities to innovate new approaches and solutions
- Scaling up protein functional annotation: AI-assisted literature information extraction and automated functional annotation
- Organizing and sustaining the growing sequence space: AI-enabled sequence clustering and similarity search

Lack of well-curated data is a major barrier for AI Research

UniProt well-curated and AI/ML-ready data