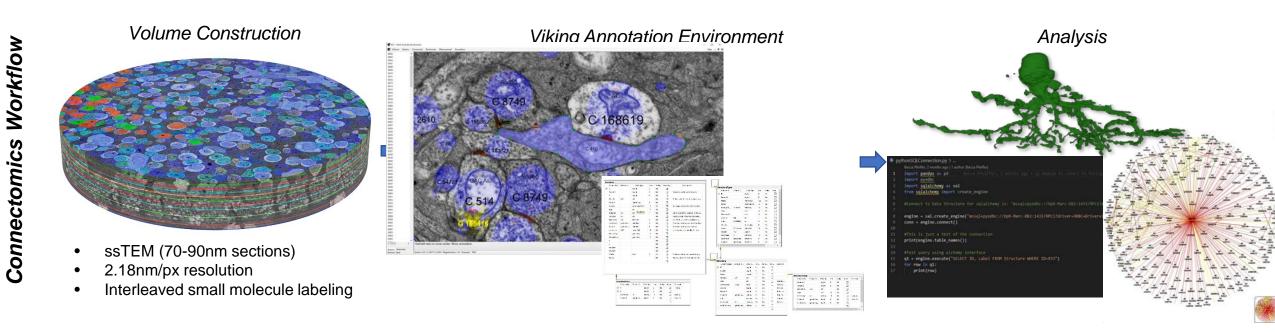
Breakout Session 6: Track B

Retinal Circuitry - Improving AI Readiness of Existing Retinal Connectomes


Dr. James Anderson Senior Software Design Engineer, University of Utah - Moran Eye Center

Retinal Circuitry - Improving Al Readiness of Existing Retinal Connectomes

Presenter: James Anderson

PI: Bryan Jones

NOT-OD-22-67

Comparative Neuroanatomy

<u>RC1</u>

Rabbit retinal connectome Status: Open Database Annotations: ~1.3 million

<u>RC2</u>

Mouse retinal connectome Status: Active Database Annotations: ~500k

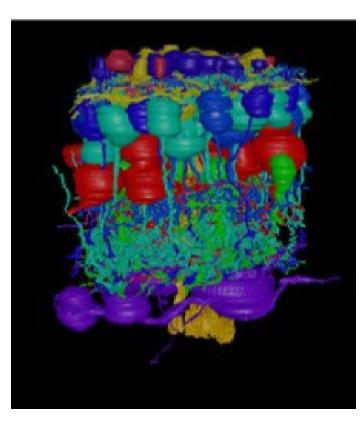
<u>RC3</u>

Primate (Macaque) retinal connectome Status: Captured Database Annotations: N/A

Pathoconnectomics

<u>RPC1</u>

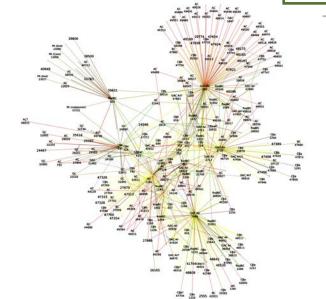
Pathoconnectome from 10mo rabbit model of Retinitis Pigmentosa (Phase 1 retinal degeneration) Status: Open Database Annotations: ~280k Pathoconnectome from 2yo rabbit model of Retinitis Pigmentosa (Phase 2 retinal degeneration) Status: Active Database Annotations: ~100k


RPC2

<u>RPC3</u>

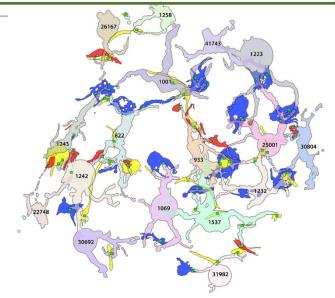
Pathoconnectome from 4yo rabbit model of Retinitis Pigmentosa (Phase 3 retinal degeneration) Status: Captured Database Annotations: N/A

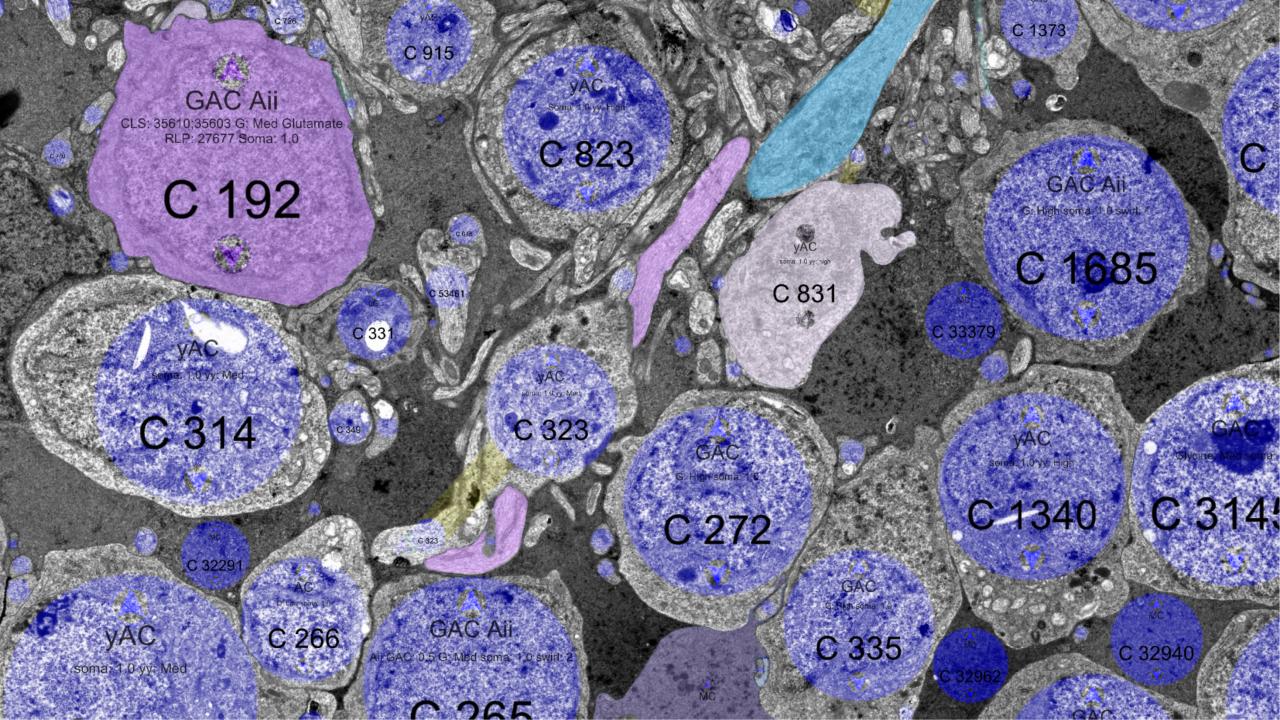
Database Features:

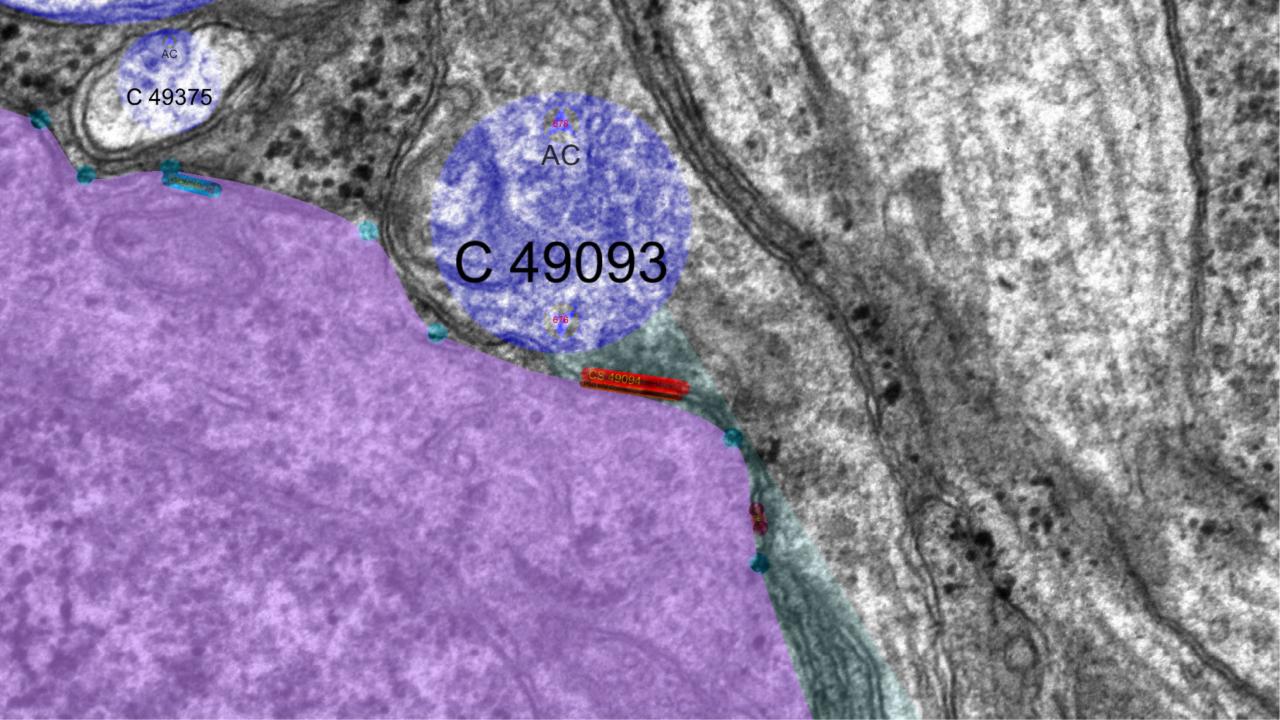

- SQL reduces development cost and maintenance. Very mature tools.
- Flexible addition of new structures
- Geometry columns encode annotations. Spatial queries within SQL. Enables encoding any geometric shape.
- Hierarchy describes relationships of biological structures (Parent=Cell, Child=Subcellular structures)
- Size, shape, and position are encoded in every annotation
- Morphology and connectivity are encoded in separate but relatable graphs. Allowing efficient querying.

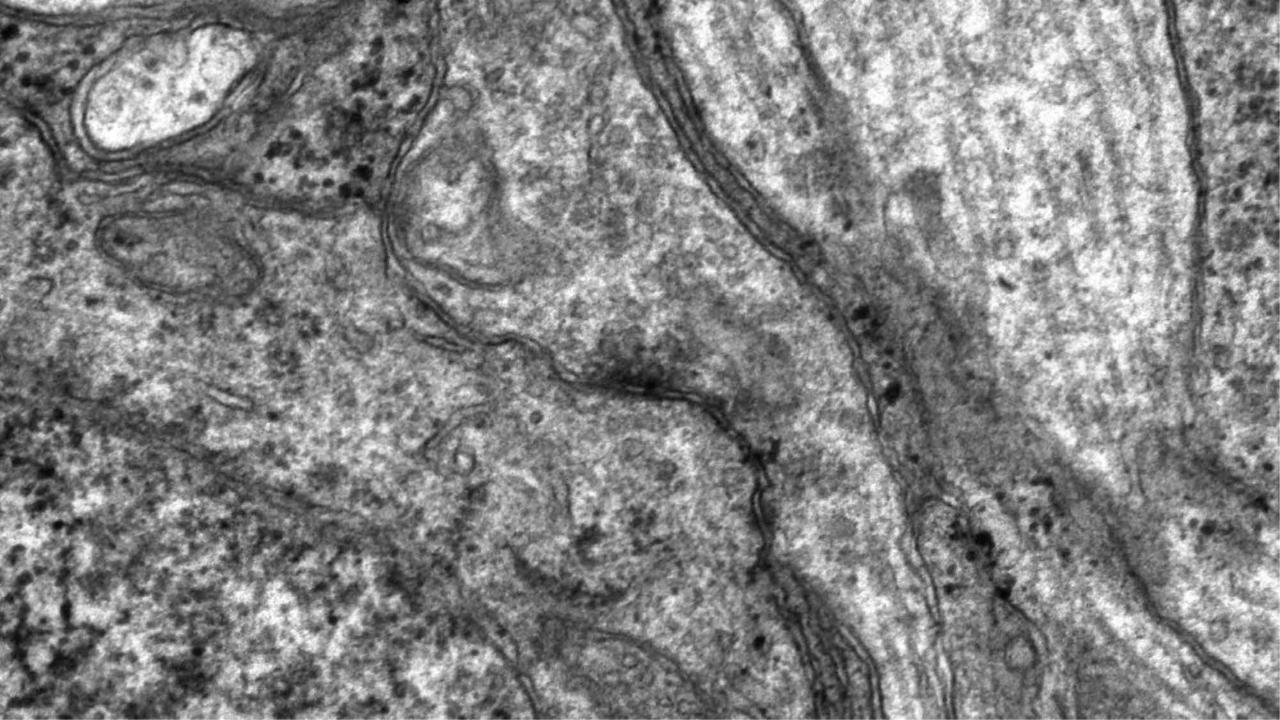
Morphology

Lo	cation						
	Column N	Default V	Data Type	Len	Nulla	Identity	Description
8	ID		bigint	8	No	\checkmark	
	ParentID		bigint	8	No		Structure which we belong to
	Z		bigint	8	No		
	Closed	((0))	bit	1	No		Defines whether Vertices form a c
	Version		timestamp	8	No		
	Overlay		varbinary(MAX)	-1	Yes		An image centered on X,Y,Z which
	Tags		xml	-1	Yes		
	Terminal	((0))	bit Location	1	No		Set to true if this location is the e
	OffEdge	((0))	bit	1	No		This bit is set if the structure leav
	TypeCode	((1))	smallint	2	No		0 = Point, 1 = Circle, 2=Ellipse, 3
	LastModif	(getutcda	datetime	8	No		Date the location was last modified
	Created	(getutcda	datetime	8	No		Date the location was created
	Username	(N)	nchar(16)	16	No		Last username to modify the row
	MosaicSh		geometry	-1	No		
	VolumeSh		geometry	-1	No		
	x				No		
	Y				No		
	VolumeX				No		
	VolumeY				No		
	Width		float	8	Yes		Width used for line annotation ty
	Radius				No		Radius, calculated column neede


3								
Lo	cationLink							
	Column N	Default V	Data Ty	Len	Nulla	lden	Descript	
8	Α		bigint	8	No		The co	
8	В		bigint	8	No			
	Username	(N'')	nchar(16	No		Last us	
	Created	(getutcda	dateti	8	No		Row Cr	




itr	uctureType						
	Column N	Default V	Data Type	Len	Nulla	Iden	^
Ŷ	ID		bigint	8	No	\checkmark	
	ParentID		bigint	8	Yes		
	Name		nchar(128)	128	No		
	Notes		nvarchar(M	-1	Yes		
	MarkupTy	(N'Point')	nchar(16)	16	No		
	Tags		xml	-1	Yes		
	StructureT		xml	-1	Yes		
	Abstract	((0))	bit	1	No		
	Color	(OxFFFFFF)	int	4	No		
	Version		timestamp	8	No		
	Code	(N'No Co	nchar(16)	16	No		
	HotKey	('\0')	char(1)	1	No		
	Username	(N'')	nchar(16)	16	No		
	LastModif	(getutcda	datetime	8	No		
	Created	(getutcda	datetime	8	No		~


Connectivity

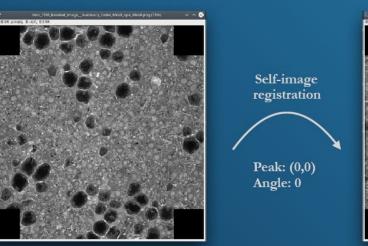
	Column Name	Default Va	Data Ty	Len	Nulla	lden	Descript								
8	ID		bigint	8	No	\checkmark									
	TypeID		bigint	8	No										
	Notes		nvarch	-1	Yes			~0~00 S	ructureLink						
	Verified	((0))	bit	1	No			I	Column N	Default V	Data Ty	Len	Nulla	Iden	Descript
	Tags		xml	-1	Yes		Strings		SourceID		bigint	8	No		
	Confidence	((0.5))	float	8	No		How ce		TargetID		bigint	8	No		
	Version		timest	8	No		Record		Bidirectio	((0))	bit	1	No		
	ParentID		bigint	8	Yes		If the st		Tags		xml	-1	Yes	Π	
	Created	(getutcda	dateti	8	No		Date th		Username	(N'')	nchar(16	No		Last us
	Label		varcha	64	Yes		Additio		Created	(getutcda	dateti	8	No		Row Cr
	Username	(N'')	nchar(16	No		Last us		LastModif	(getutcda	dateti	8	No		
	LastModified	(getutcda	dateti	8	No									П	

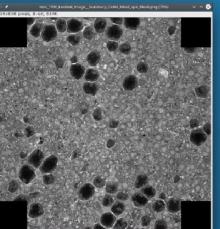
Data Sharing

Primary Goal: Make it simple for collaborators to access our combined annotation and image data to create machine learning algorithms to augment volume annotation efforts.

Annotations:

- OData works great for sharing annotations:
 - http://websvc1.connectomes.utah.edu/RC1/OData/
- Queryable, Readable directly into a Browser, Spreadsheet, or programming API
- Spatial data is plain text Open Geospatial Consortium format. Libraries exist to interpret it


Images:


- The goal is to ease accessibility for the image processing lab.
- Viking uses client GPU to perform transforms. Moving processing from client to server simplifies the client experience.
- Real-time transformation has been an advantage for adjusting volume registration during annotation phase.
- Attempts to share images:
 - 1st Approach : Client exports region-of-interest to disk
 - 2nd Approach : Cached RC1 volume available via HTTP, ex: <u>http://storage1.connectomes.utah.edu/RC1VolumeRegisteredV2/RC1/234/Tiles/001/X160_Y049.png</u>
 - 3rd Approach : Web API (Stopped at prototype due to performance issues)
 - 4th Approach : A stack of numpy arrays, either shipped in the mail or a long download

Progress Towards Goal: CuPy proof-of-concept

Python tests - self registration

Angle search range:

- Fast: [-2, 0, 2]
- Brute: (-178, 178)

Methods:

- Single thread
- Multi-thread
- GPU

✓ ✓ Test Results	7min	37 sec
✓ ✓ test_SliceToSliceBrute		
✓ ✓ TestStosBruteToSameImage		
✓ testSameTEMImageFast_GPU (Make sure the same image aligns to itself		522 ms
✓ testSameTEMImageFast_MultiThread (Make sure the same image aligns t		
✓ testSameTEMImageFast_SingleThread (Make sure the same image aligns	ósec	327 ms
✓ testSameTEMImage_GPU (Make sure the same image aligns to itself wit	ó sec	955 ms
✓ testSameTEMImage_MultiThread (Make sure the same image aligns to it		
✓ testSameTEMImage_SingleThread (Make sure the same image aligns to i	5min	38 sec
Cleme	nt Va	achet

Registration requirements:

• FFT

mini_TEM

806x806 pixels

- Random Number Generation
- Image Labeling
- Arithmetic
- Convolution

Assembly Requirements:

- Delaunay triangulation
- Texture mapping

Registration Speed

GPU	< 7 sec
Multi-core	101 sec

GPU is 14x faster at Registration!

Progress Towards Goal: GPU Implementation with CuPy

CuPy

CuPy is a NumPy/SciPy open-source array library for GPU-accelerated computing with Python

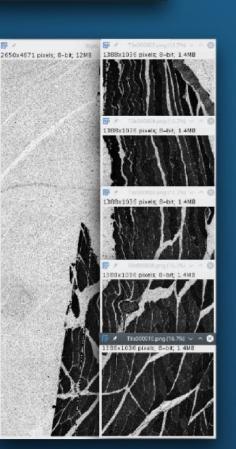
Transforms	single CPU	multi CPU	partial GPU	full GPU
Rigid_NoRotation	\checkmark	1		√
Rigid	\checkmark	1		√
Centered Similary	\checkmark	1		√
MeshWithRBFFallback	\checkmark	1	√	
GridWithRBFFallback	√	1	1	

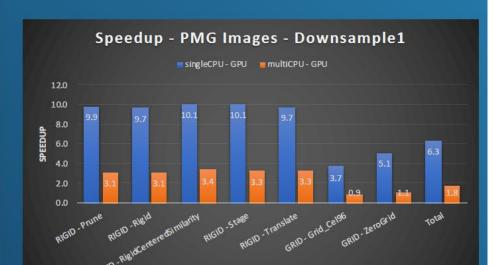
Implementation for assembly transforms

Note: some transform components (e.g. triangulation) haven't yet been implemented in CuPy

- CuPy lacked the LinearNDInterpolator function necessary for a full GPU implementation.
- The function was <u>pulled into the next</u> <u>CuPy release</u> two weeks ago
- Our CuPy version will be fully implemented upon next official cupy release

Progress Towards Goal: Tile Assembly


PMG files


- 10 image tiles - 7 mosaic transforms

Grid_Cel96_Mes8_sp4_Mes8_Thr0.5.mosaic Prune_Thr1.0.mosaic RigidCenteredSimilarity.mosaic Rigid.mosaic Stage.mosaic Translate_Max0.5.mosaic ZeroGrid.mosaic

Image tiles: - 1388x1036 pixels

Full image: - 2650x4671 pixels

- Ignore the blue bar results.
- Yellow multi-core
 comparison ran on an
 8-core desktop
 system.
- Beyond missing
 LinearNDInterpolate I
 suspect moving
 memory between CPU
 and GPU is a
 significant time cost.
 Most likely
 optimizable.

Progress and Ongoing Efforts

Tools

- Every critical path now utilizes CuPy (with the one exception discussed). Passes unit tests.
- Have support to export a stack of full resolution numpy files
- Waiting for next cupy version to fully test with GPU at scale

Docker Distribution

- Docker is simple to deploy and gives us easy access to our university high-performance computing center. This provides easier access to the command-line tool that can export registered volumes and will allow clients to run the Web Service locally for performance.
- All but one tool required to take images from capture to a 3D numpy array now run in a single docker image.
- We have contracted Kitware to port the remaining legacy C++ ITK-based tool to a web image to complete the docker image.

Web Service

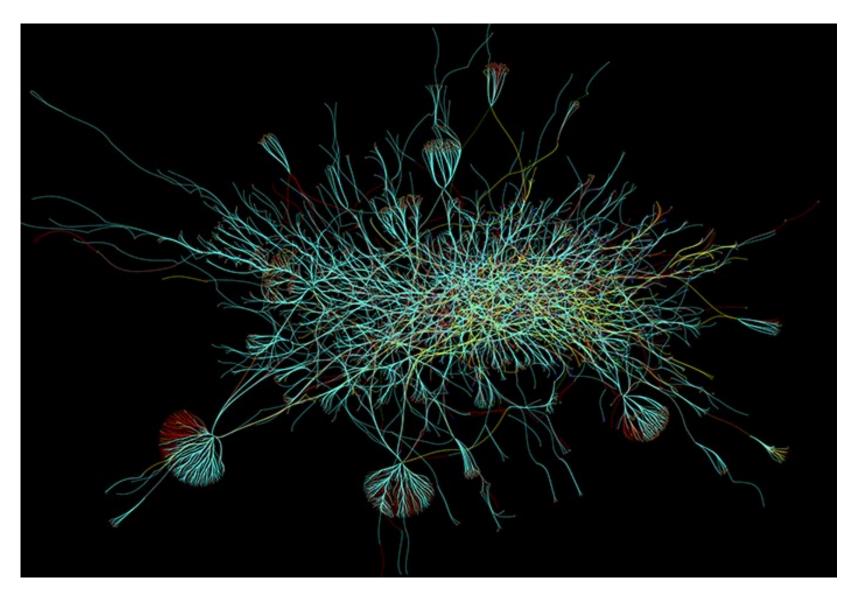
- In progress.
- GPU performance determines if we revisit the original on-the-fly web service prototype or rely upon pre-generated images.

Legacy Data

- Original registered RC1 images available via HTTP are being copied into a stack of numpy arrays.
- RC1 raw data is now compatible with the latest code. Going from imported data to a registered volume is a great stress test for the new GPU code.

MarcLab for Connectomics:

Bryan W. Jones (Director) James Anderson Rebecca Pfeiffer Crystal Sigulinsky Megan Croom Jia Hui Yang Matt Berardy Selena Wirthlin Taylor Otterness


Collaborators:

Clement Vachet (Scientific Computing Institute, University of Utah) KitWare

Unmet CuPy Contributor:

Edgar Andrés Margffoy Tuay (LinearNDInterpolator Author)

NEI EY015128 NSF NeuroNex2 Grant (2014862) NEI EY14800 Vision Core Research to Prevent Blindness CDA Unrestricted Grant from Gabe Newell