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Summary of parent grant: Short and long-term consequences of wildfires for 
Alzheimer's disease and related dementias (RF1AG071024, PI: Casey)

Aim 1: Estimate the risk of mild cognitive impairment (MCI) and Alzheimer’s disease 
(AD) and AD-related dementias (ADRD) associated with wildfire PM2.5 exposure

Aim 2: Identify individual and area-level susceptibility factors that exacerbate the 
association between wildfire PM2.5 exposure and MCI and AD/ADRD

Aim 3: Estimate the risk of MCI and AD/ADRD that is associated with living in close 
proximity to the site of a wildfire disaster and the extent to which specific subgroups 
differ with respect to these outcomes 



Example of wildfire PM2.5 output



Motivation
● The data sources needed to do effective wildfire analysis are disparate, not very accessible, and 

unfriendly to AI/ML applications
○ These data often do not follow FAIR principles

● Although the data is rich and publicly available through US agencies, acquiring it and preparing it for 
analysis presents a significant investment by any researcher

Goals
● Our goal is to develop reproducible pipelines that can be harnessed by others 
● Leverage Harvard Dataverse, a generalist repository, and GitHub, to ensure that our data is shared 

according to the latest research dissemination standards (such as FAIR and TRUST principles)



Challenges: working with gridded/raster data for linkable and inter-operable 
manipulation

● Format Diversity There's a wide range of file formats used to store raster data (e.g., 
TIFF, NetCDF, HDF, and more), each with its own specifications and intended use 
cases. 

● Data Size Raster data, especially high-resolution imagery or extensive time series 
datasets, can be extremely large, making storage, transmission, and processing 
resource-intensive.

● Spatial Reference Systems Raster data can be represented in various spatial 
reference systems. Discrepancies between these systems can lead to 
misalignments when integrating data from different sources.

● Scalability of Processing Tools As the volume of raster data grows, existing 
processing tools may struggle to handle them efficiently. 

● Data Quality and Uncertainty The quality of raster data can vary significantly 
depending on the source and collection methods, affecting its suitability for certain 
applications.



Challenges: aggregating gridded/raster data at a specified geographic level 
for health studies across years

Raster data inherently represent continuous space, while health data (MCI, AD/ADRD 
and other health outcomes) often correspond to residence at discrete administrative 
units (like counties or zip codes).

● Spatial alignment using existing aggregation solutions within gis-packages in R and 
Python
○ failure/crash or excessively long processing times is often encountered 

when dealing with very high-resolution raster data and/or intricate polygon 
shapes

○ Missing data handling
● Temporal handling 

○ changes in administrative units adds additional complication for 
aggregations at various points in time 



Challenges: fetching census data at a specified geographic level for health 
studies across years

● Vast amount of surveys U.S. Census Bureau data involves navigating a complex 
landscape of information collected through various surveys that takes time to 
understand

● Vast amount of variables Surveys such as the American Community Survey 
renders up to 60,000 variables

● API’s variable and time coverage existing census packages and APIs fetch data 
for different subsets of variables and years, the ease-of-use of each package varies

● Surveys geographic level coverage not all surveys cover all geographic levels
● Harmonization of variable codes across years census variable codes change 

over time, complicating data comparability and usage across years
● Changes in administrative units Changes in geographic boundaries over time, 

such as those due to redistricting or the incorporation of new municipalities



Project stages
Spatial aggregations

● Assessing the performance of multiple GIS-packages in R and Python
● Determining the most appropriate GIS-object type to perform fast 

aggregations 
● Understanding the differences between different raw gridded-datasets
● Identifying sources of GIS-files containing administrative boundaries 

across time (and their differences) 
● Harmonized geographic ID across years

Census data

• Investigating and understanding key differences between US 
Bureau Census surveys and APIs 

• Identifying key features such as time and spatial coverage of 
surveys 

• Performing NLP analysis to simplify the identification of “variable 
themes” clusters

• Documenting variable code changes across years for time series 
fetching

Our unifying pipeline approach: data-as-code containerized tasks

● Identifying commonly used Data Science tooling for pipelines
○ workflow languages -> Snakemake, cwl
○ configuration parsers -> Hydra
○ container builders -> Docker

● Creating Github repositories for easy-to-use reproducible dataset generation
● Sharing the datasets in Dataverse within a collection that has metadata 

specific for environmental health studies



Finalized products

Climate types 
Raw source 
Köppen-Geiger climate classification from Beck et al
Github repository
https://github.com/NSAPH-Data-Processing/climate_types_raster2polygon
Dataverse doi
TBD

Satellite PM2.5

Raw source 
Atmospheric Composition Analysis Group V5.GL.04 model
Github repository
https://github.com/NSAPH-Data-Processing/satellite_pm25_raster2polygon
Dataverse doi
TBD

Census series
Raw source 
api.census.gov
Github repository
https://github.com/NSAPH-Data-Processing/census_series
Dataverse doi
https://doi.org/10.7910/DVN/N3IEXS

Gridmet
Raw source 
Gridmet from climatology lab
Github repository
https://github.com/NSAPH-Data-Platform/nsaph-gridmet
Dataverse doi
TBD

https://github.com/NSAPH-Data-Processing/climate_types_raster2polygon
https://github.com/NSAPH-Data-Processing/satellite_pm25_raster2polygon
https://www.census.gov/data/developers.html
https://github.com/NSAPH-Data-Processing/census_series
https://doi.org/10.7910/DVN/N3IEXS
https://github.com/NSAPH-Data-Platform/nsaph-gridmet


Finalized products, continued

Zip code smoke aggregations
Raw source 
https://doi.org/10.7910/DVN/DJVMTV from Childs et al
Github repository
https://github.com/NSAPH-Data-Processing/census_series
Dataverse doi
https://doi.org/10.7910/DVN/VHNJBD

Zip2zcta x-year x-walk
Raw source 
UDS mapper
Github repository
https://github.com/NSAPH-Data-Processing/zip2zcta_master_xwalk
Dataverse doi
https://doi.org/10.7910/DVN/HYNJSZ

PM2.5 components

Raw source 
Atmospheric Composition Analysis Group V4.NA.03 model
Github repository
https://github.com/NSAPH-Data-Platform/nsaph-gridmet
Dataverse doi
TBD

https://doi.org/10.7910/DVN/DJVMTV
https://github.com/NSAPH-Data-Processing/census_series
https://doi.org/10.7910/DVN/VHNJBD
https://github.com/NSAPH-Data-Processing/zip2zcta_master_xwalk
https://doi.org/10.7910/DVN/HYNJSZ
https://github.com/NSAPH-Data-Platform/nsaph-gridmet


Future Work

● Continue to deposit and share data on Dataverse
● Currently in the process of conducting analysis using the 

processed AI/ML ready data to accomplish aims of the 
parent R01 
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