Breakout Session 4: Track A

Development of an AI/ML-Ready Knee Ultrasound Dataset in a Population-Based Cohort

Dr. Katherine Yates Rheumatology Fellow, University of North Carolina at Chapel Hill

Development of an Al/ML-ready knee ultrasound dataset in a population-based cohort

NOT-OD-22-067

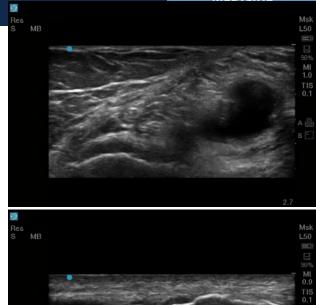
3R01AR077060-03S1, PI: Amanda Nelson, MD MSCR, UNC

Presented by: Dr. Katherine Yates, UNC Rheumatology fellow

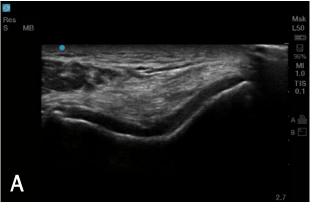
Value to the field

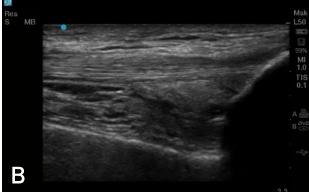
- Systematically performed studies are needed to inform broader use of ultrasound (US) for knee osteoarthritis (OA)
- US is safe, accessible, and efficient, bridging the gap between limited information on x-ray and more expensive MRI for OA
- Demonstrating the utility of US as an assessment tool before disease is detectable on radiographs, is crucial

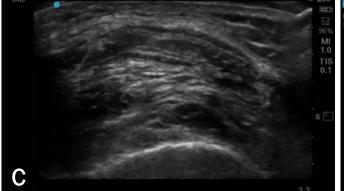
Parent R01 summary

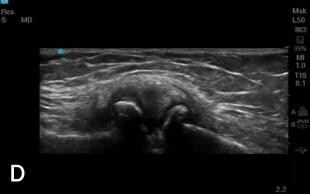


- Obtain standardized US and radiography in the diverse populationbased Johnston County Health Study (JoCoHS)
- Aim 1: determine the population prevalence of knee US features (i.e., cartilage and meniscal damage, synovitis/effusion, calcium crystal deposition, popliteal cysts and osteophytes)
 - o overall and in key subgroups by age, sex, race/ethnicity, and symptom status
- Aim 2: quantify associations between US features and radiographic findings and symptom scores overall and in key subgroups
- Aim 3: apply novel machine learning methodologies to a) develop an overall US score for symptomatic KOA and b) identify the contribution of US variables to phenotypes relevant to KOA based on general health, physical activity, and functional assessments

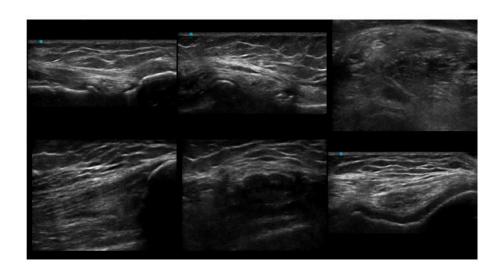

US images obtained per knee



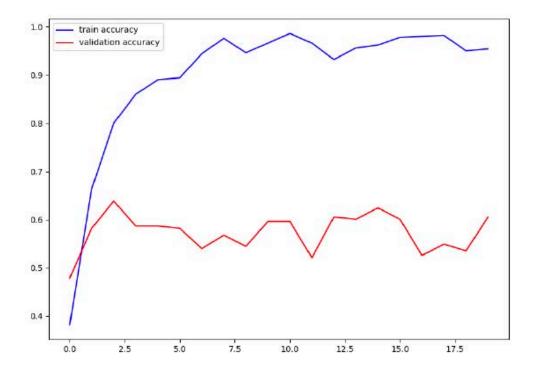

	No. 115		100
	View	Position	Structure(s) and/or pathology identified
Α	Suprapatellar	Transverse over the distal femoral condyles, maximal flexion	Articular cartilage
В	Suprapatellar	Longitudinal over the distal femur and patella, 30° flexion, with and without power Doppler	Effusion/synovitis
С	Suprapatellar	Transverse over the distal femur, 30° flexion	Effusion/synovitis
D	Medial	Longitudinal at the medial femorotibial joint, 30° flexion	Osteophytes, meniscus, effusion/synovitis
Ε	Lateral	Longitudinal at the lateral femorotibial joint, 30° flexion	Osteophytes, meniscus, effusion/synovitis
F	Posterior	Transverse medial at the femoral condyle	Popliteal cyst



Supplement Aim 1



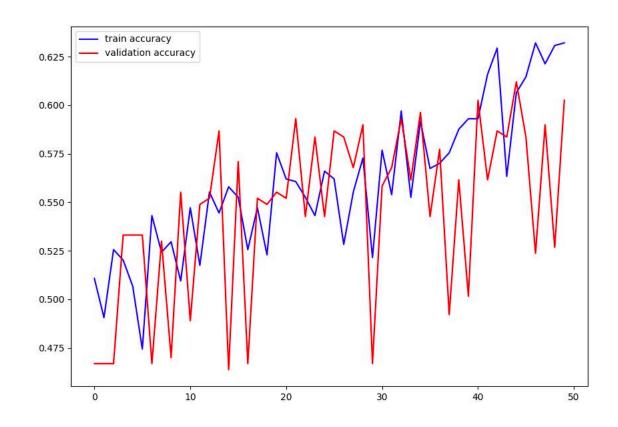
Apply state of the art DL/convolutional neural network (CNN)
methods to standardized knee US images obtained in a diverse,
representative cohort to determine US features that are crosssectionally associated with a) knee pain and b) radiographic
features of knee OA


Initial approach

- Combine images into one composite per knee
- Pretrained models: VGGNet, ResNet, etc.

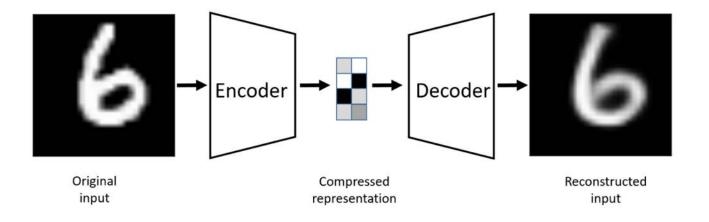
Result: overfitting

Data augmentation with pretrained models



- Generative adversarial networks to increase number of (pseudo) images
- Build models for images separately
- Horizontal flips, random sharpness, denoising
- Perspective transformation

Figure 4: The affine transformation of the images of Fig.3. Points A, B, and C on the checkerboard got mapped to the corresponding arbitrary points marked with red circles. Image by the author.


Result: inadequate accuracy

Autoencoders

- Unsupervised
- Useful for feature extraction and dimension reduction
- Encoder compresses data;
 Decoder reconstructs data

Layers

- 3-4 convolutional
- Batch normalization
- Maxpooling
- Rectifier Linear Unit
- Fully connected

Autoencoders

- Results: training loss and validation loss, unable to capture image features related to pain for classification purposes
- Need for more images (collection ongoing)

Painful knee

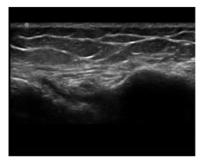


Figure 1: Original

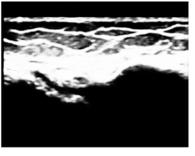


Figure 2: Reconstructed image

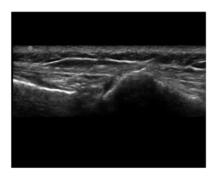


Figure 3: Original

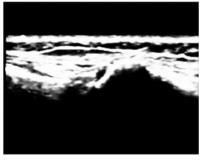
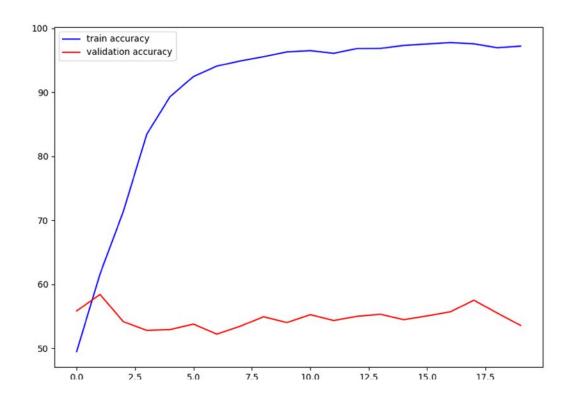



Figure 4: Reconstructed image

Nonpainful knee

Supplement Aim 2

 Optimize these US images, in direct response to NOT-OD-22-067, to be ready for Al/ML approaches by our group and others in the OA and US research communities, following the FAIR principles and improving the utility of the data for Al/ML approaches.

 Progress: images are continually uploaded to Dataverse, with ontology keywords and descriptive metadata as well as an instructional Jupyter notebook (next slide)

The Johnston County Health Study

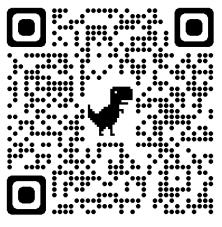
More about the study can be found at https://jocohs.unc.edu/

(University of North Carolina at Chapel Hill)

Harvard Dataverse > The Johnston County Health Study >

Development of an AI/ML-ready knee ultrasound dataset in a population-based cohort

Version 5.1



Nelson, Amanda, 2023, "Development of an Al/ML-ready knee ultrasound dataset in a population-based cohort", https://doi.org/10.7910/DVN/SKP9IB, Harvard Dataverse, V5, UNF:6:e1WuNGzFGakEGIWSMnJalg== [fileUNF]

Cite Dataset ▼

Learn about Data Citation Standards.

Access Date	taset ▼
Contact Owner	Share
Dataset Metrics 🕣	
248 Downloads 🕣	

Future directions

- We continue to collect US images in the JoCoHS, increasing the size of the dataset
- We have identified some potential external datasets for either increasing image number or eventual validation
- We will continue to explore methods for augmentation and encoding to allow for feature extraction, considering other potential outcomes

Acknowledgments

US readers: Drs. Samuels, Kohler, Bakewell, and Lin

Database manager: Patrick Gale

Statisticians: Carolina Alvarez, Todd Schwartz

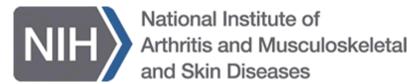
US technologist: Sue Guin

Initial support of the US project (SOAR) from the RRF

JoCoHS Project manager: Tessa Walker

JoCoHS co-Pls: Drs. Nelson and Golightly

Deep learning: Drs. Siyeon Kim and Steve Marron


TARC: Drs. Jonas, Callahan, and Loeser

Initial support of JoCoHS from the CDC

R01 support of the US project (R01) from NIAMS

Subsequent support of JoCoHS from UNC and TARC

CORE CENTER for CLINICAL RESEARCH

Questions? Please email Amanda Nelson, MD MSCR aenelson@med.unc.edu

