Breakout Session 7: Track B

RESPIRE: A Reusable Architecture for Domain Centric 'Omics Data Sharing

Dr. Thomas Hampton Research Scientist, Geisel School of Medicine at Dartmouth Retrieval, Reprocessing, Normalization and Sharing of Gene Expression and Airway Microbiome Data Sets to Facilitate AI/ML Analysis Studies of Bacterial Lung Infections

PI: Bruce A. Stanton, PhD

Presenter: Thomas H. Hampton, PhD

RESPIRE Team

Bruce Stanton

Matt Rogers

Kiyoshi Fukutani

Lily Taub

Sam Neff

RESPIRE: A community-based approach to big data

- I manage a bioinformatics core that specifically facilitates translational research in cystic fibrosis (CF) a genetic disease.
- Polymicrobial, antibiotic-resistant lung infections elicit immune responses that degrade lung function in CF.
- Being part of the CF community enables promote FAIR data principles and provide disease-focused analyses and software.
- RESPIRE enables CF researchers to quickly create data compendiums relevant to their research.

- Researchers do not generally share count data
- Meta-data is highly variable in scope and format
- Designing and implementing an extensible system is much more difficult than a special purpose system

- <u>https://respire.dartmouth.edu</u>
- <u>https://github.com/DartCF</u>

	Gene Expression Module	Microbiome Module
Summary	Gene expression data related to lung diseases including asthma, pulmonary disease, cystic fibrosis, COPD, and idiopathic pulmonary fibrosis	Microbiome data related to lung diseases
Source of Metadata	NCBI (BioProject, GEO)	NCBI (BioProject)
Source of Data	refine.bio	SRA
Studies Identified	2,469	221
Studies Loaded	554	207
Samples Identified	72,813	50,021
Samples Loaded	24,142	40,619
Amount of Data	103 Gigabytes	.5 Gigabyte

Select data	a module:	
Gene Exp	ression	
Has data?	2	
Search terr	ns	
Enter one	or more search terms	
Select orga	anism	
Pseudomo	inas aeruginosa	
Select data	a profiling method	
Expression	n profiling by array	
Minimum S	Samples	
50		
	Search	

- Studies matching CF keywords are shown, further limited by key words
- Data sorted by number of samples
- Downloadable sets are self-consistent
- Single pipeline

- Extensible architecture
- Open source
- Documented
- Admin module

North American CF Conference

200

RESPIRE: Searchable, downloadable multi-omic data sets for lung disease research

<u>T. Hampton</u>¹, M. Rogers², S. Neff³, B. Stanton³. ¹Geisel School of Medicine, Dartmouth College, Hanover, NH; ²Research Computing, Dartmouth College, Hanover, NH; ³Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH

Background: The genomic revolution identified mutations in the CFTR gene as the underlying cause of CF, increasing understanding of disease etiology, identification of molecular targets, and ultimately highly effective modulator therapies that have vastly improved the lives of most people with this disease, but much work remains to be done. Modulators do not totally reverse the disease, and many people with CF (PwCF) have mutations that current modulators do not address. We believe that the next wave of innovation to address these issues will be driven in part by high-throughput transcriptomic, proteomic, metabolomic, and microbiome data. Here we present theREpoSitory for Pulmonary expression data Reuse (RESPIRE), a platform designed to make publicly available multi-omic data easy for lung biologists to find, access, and reuse. Interoperable 'omics data will help drive basic science forward in CF and other lung diseases.

Dartmouth Scientific Partners

George O'Toole

Marta Rudzite

Bassam El Hafi

These collaborators use big public data sets to build model polymicrobial communities and study how less-familiar bacteria may drive patient outcomes in CF.

Ongoing Efforts

- Updating microbiome and transcriptomic sets
- Adding proteomic and metabolomic data
- Working with big pharma to roll out RESPIRE architecture in other disease indications

Acknowledgements

- Cystic Fibrosis Foundation
 - STANTO19G0
 - STANTO20PO
 - STANTO19R0
- NIH
 - P30-DK117469
 - R01HL151385
- Flatley Foundation