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Outline

* Project Motivation
* Plan
e Expected outcome



Missing data in clinical trials
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Additional requirements for an unbiased study are:

1) missing data from randomized patients do not bias the comparison of interventions and
2) outcome assessments are obtained in a similar and unbiased manner for all patients.

Missing data influences the
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Various imputation techniques

 Replace the missing value by:
0 Mean (Very common)
0 Median(Very common)
o Zero fill

* Performing multiple imputations (ex: by mean matching)

e |Last observation carried forward

 Worst observation carried forward

e Likelihood estimation

* More advanced ML-based methods to estimate missing value



Please choose a csv file.

Data imputation tool.
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Imputation algorithm is recommended based on data
distribution/observations

— a FLEXIBLE algorithm
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model | lab1 | lab2 | lab3 | lab4
LR 42 67 Lab | model
Imputation SVM 12 13 20 Flexible labl LR
—| RF 32 | 22| 7 | 62 lab2 | SVM
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As expected, a FLEXIBLE algorithm outperforms any
other algorithm (based on two error metrics)

Using clinical data from MIMIC dataset.

10.005
3.5 |
u§ 3.0f 10004 5
o 1 n
< j =
= 2.5 10.003 %
2.0} |
0.002




As expected, a FLEXIBLE algorithm outperforms any
other algorithm (based on two error metrics)

Using clinical data from Penn State EHR.
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Simulate data based on EHR data from Geisinger

Multivariate normal distribution

b var iable |y
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BUN -
CREATININE -
GLU -
HEMOGLOBIN -
HEMATOCRIT -
RBC -

MCHC -

PLATELET MEAN VOL -
MCV -

MCH -

WBC -

ANION GAP -
PLATELET COUNT -
RDW -

ALT -

ALBUMIN -
LYMPHOCYTE -
TP -

MONOCYTE -
MONOTYPE ABS -
LYMPHOCYTE ABS -
AST -

BASEPHIL -

AP -

NEUTRPHIL -

TBIL -
EOSINOPHILS ABS -
EOSINOPHILS -
BASEPHILS ABS -
CHOLESTEROL -
HDL -

LDL -
TRIGLYCERIDES -
CHOLESTEROL:HDL RATIO -
NEUTROPHIL ABS -
URINE PH -
Thyrotropin -

PT =

INR -

HgA1C -

GLU ~

CREATININE 7
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Comparing Geisinger vs. Simulated data

using simulated data—>caution 34
when studies only report results
using simulated data 32|
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Missingness and skewness impact on performance
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PLAN ° Evaluating various imputation strategies

» Evaluating if imputation results can be improved when clinical trial
data is augmented/enriched with simulated patient data

» Evaluating if inclusion of other variables (such as SDoH, past medical
history, etc.) can help improve imputation of clinical trial data

e SDoH

Creating Simulated patients to ¢
increase diversity and sample size

}

Imputation Il

 Medical history and comorbidities

Family history
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Y
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Plasma and blood samples

/

Comparison
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Expected Outcomes

* Missing of certain features/variables will not be at random

* Certain features/variables are expected to be missing in a specific
group of patient population

e Improving imputation will improve prognosis/diagnosis prediction
e Simulated data can aid in improving imputation results
e A user-friendly tool to help impute clinical trial data



Questions
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