Breakout Session 4: Track A

PREcision Care In Cardiac ArrEst - ICECAP (PRECICECAP)

Dr. Yann Le Guen Senior Biostatistician, Stanford University

PREcision Care In Cardiac ArrEst - ICECAP (PRECICECAP) NIH/ODSS March 27th, 2024

Presenter: Yann Le Guen, PhD, MS, Assistant Director Quantitative Science Unit, Department of Medicine, Stanford University

PI: Karen G. Hirsch, MD, Associate Professor Department of Neurology, Stanford University

Co-PI: Jonathan Elmer, MD, MS, Associate Professor Departments of Emergency Medicine and Neurology, University of Pittsburgh

Critically III Patients Generate LOTS of Data

Sanchez-Pinto et al. Big Data and Data Science in Critical Care. 2018

Critically III Patients Generate LOTS of Data

Generally available in the electronic health record (EHR)

Sanchez-Pinto et al. Big Data and Data Science in Critical Care. 2018

Current Treatments Lack Precision

- Parent clinical trial: ICECAP aims to find optimal cooling duration for all patients
- Most cardiac arrest trials of effective interventions are neutral
- Little effort to target interventions to likely responders
- What are we trying to predict/improve?
 - Survival (likeliness to be discharged alive)
 - 90-day function/prognosis
- Variables specific to cardiac arrest
 - Patient and arrest characteristics
 - Cardiopulmonary physiology
 - Neurophysiology (EEG)
 - Imaging
 - Response to treatment

Stratified treatments

Available Data

Two types of variables

I. Time-invariant variables from baseline data collection (categorical & quantitative)

Charlson Comorbidity Index (CCI) Aggregating categorical variables in a score used in ER

Distribution of Clinically Relevant Continuous Features

Time-invariant variables are the most critical variables for the initial prediction of survival and optimal hypothermia duration prior to waveform data recording.

Available Data

Two types of variables

These can be used to update the initial prediction on an hourly or six-hour basis.

Available Data

• Time-varying variables heterogeneous availability across participants:

And artifacts

Data Acquisition pipeline

Artifact Annotation Pipeline

Moberg visualization platform

Algorithmic guided and manual annotation

Artifact Annotation Pipeline

Example of artifacts on the Arterial Blood Pressure signal

Expected Arterial Blood Pressure signal

Long Short-Term Memory - RNN model

Predictions: Predict patterns in the next time intervals (used for imputation and prognosis). Classification: Classify and predict the participants group.

Long Short-Term Memory - RNN model

Example of imputation on Arterial Blood Pressure mean, subsampled on 5-min windows

Summary to make variables AI/ML ready

- 100 participants enrolled and collected as part of PREICECAP
 - target 300+ participants

In progress:

- i. Harmonization and quality check of baseline variables across sites
- ii. Waveform data artifacts annotation and imputation
- iii. Waveform data featurization
- iv. Strategies to co-register raw waveforms across participants

TO DO:

Harmonization of medications/treatments across sites

Reflecting on potential predictions

- 100 participants enrolled and collected as part of PREICECAP
 - target 300+ participants

Note that body cooling duration and outcomes (survival and 90-day prognosis) are currently blinded by the parent clinical trial (ICECAP).

At baseline, using time-invariant variables, predict:

Participants most likely to survive, optimal cooling duration, and tailored treatment strategy.

During treatment, using time-varying variables, predict:

- > Whether continuing body cooling is beneficial or not;
- > Whether additional treatments could improve outcomes.

Thank you! Karen Hirsch – <u>khirsch@stanford.edu</u> Jonathan Elmer – <u>elmerjp@upmc.edu</u> Yann Le Guen – <u>yleguen@Stanford.edu</u>

PREcision Care In Cardiac ArrEst

