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Sepsis is common and deadly

e Most common cause of
death in ICUs

*5.3 million deaths per year
globally

* “True” inpatient mortality
unchanged
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Earlier antibiotics = better outcomes,
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Liu et al, Am J Resp Crit Care Med 2017;196(7):856-63



Bias

We define, for the first time, algorithmic bias in the context of Al and health sys-

tems as: “the instances when the application of an algorithm compounds existing

inequities in socioeconomic status, race, ethnic background, religion, gender, dis-

I
ability or sexual orientation to amplify them and adversely impact inequities in

health systems.”
* Underrepresentation in training

e Measurement bias

oPulse oximetry
oTemporal thermometers

* Implicit bias in:
oCare (e.g. painin the ED)
Panch et al. J Glob Health 2019;9(2):020318
Charpignon et al, Crit Care Clin 2023;39:751-768

oData collection
Sjoding et al, N EnglJ Med 2020;383:2477-2478

Bhavani et al, JAMA 2022;328(9):885-886
Van der Vegt et al. JAMIA 2023;30(7):1349-1361
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Project summary

detection and correction
system (possible RO1)
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Focus group details

* Focus group goals

1. ldentify the groupings at risk

2. ldentify causes of unequal sepsis care that might also contribute to
Inequitable prediction

3. Discuss algorithmic choices that could exacerbate inequalities

4. Understand difference between perceived and actual risk of inequitable
prediction

* 14 participants (4 clinicians, 3 data scientists, 2 ethicists, 5

advocates)
* Three sessionsin 2023:1/12, 1/26, & 1/30



Social bias effects on critical care prediction

Inequities in community resources
(e.g., structural / systemic racism,
rural vs urban)

SDOH (health literacy, income
inequality, access to quality food & Community Personal clinician biases
education) Mistrust

Lack of data source Clinician bias in Bias in syndrome
variability (e.g. data from Disparities in acguis.ition: line of recognition (e.g. pain
rural populations, early questioning and workup suggestive of sepsis) Bias in missingness?
geographic diversity) presentation

hS

Disparities in data
integrity (e.g., pulse
Inequitable data Diagnostic oximetry)

availability disparities
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development
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selection
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All demographic labels should be considered



Subgroup Performance Assessment, Detection &
Evaluation (SPADE)

Model Development Pipeline Algorithmic Bias Detection Pipeline

Model Predictions

Raw Patient Data (F2-Score)
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Figure 8: Algorithmic bias detection pipeline.



Temporal Splits
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Adult (age = 18) ICU
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between 2016 and 2020,
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development pipeline

MNumber of sepsis cases = 4,772 (35.9%)
MNumber of non-sepsis cases = 8,520 (64.1%)

ICU Admission: 2016 — 2018

Sepsis cases = 2,953 / Non-sepsis cases = 5,177
ICU Admission: 2019 — 2020

Sepsis cases = 1,819/ Non-sepsis cases = 3,343

Figure 5: Data pre-processing and model development diagram.

True label

sepsis

no sepsis

e Model: XGBoost

o Bayesian optimization

o Tree-structured Parzen
Estimator (TPE) approach
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SPADE identifies bias by differences from mean

performance within the cohort

* CART analysis
o Test data only (2019-2020)
* 8 input (discriminating)
features:

o Race, age, gender, incarceration
status, distance to hospital (based

on home zip code), homelessness,

insurance type, Elixhauser
comorbidity index

e Optimization based on primary
sepsis model (e.g., accuracy)

* Adjusting SPADE optimization
changes the output
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Advantages over other approaches

* Algorithm agnostic

* No a priori assumptions

* Captures intersectionality

* Not just limited to use on sensitive labels like race
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Challenges

* Ethics-focused component
o How should we define bias?
o Participants confused about the ask
o No qualitative analysis background

o Fitting focus group results into
existing ethical frameworks

* Algorithm-focused component
o Operationalizing bias
= How? What metrics?

o Working within the limits of some
labels (e.g., SES, incarceration)
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Future research

Primary model tested
for patient level bias

* Defining causes of bias (lack
of data source variability? ey o [l sty mocd oo
. (wide Cls (narrow Cis)
Measurement bias?)

SIBER bias detection platform

* Implementation into an
eXiSting AI infra StrUCture FOWBIES IS High bias risk Low bias risk High bias risk

Sample output: Sample output:
“The predicted risk in “The model cannot provide a Sample output:

this patient is » predicted risk due to biased “The predicted risk in this
output from patients in this patientis_____, but the
demographic. It will be reviewed model may need additional
by the bias detection board for training on more patients in
the best corrective action. Please this demographic to be more
use your best clinical judgement confident.”
to select the best treatment
option for this patient.”

Sample output:

“This model needs to be
trained on more patients in
this demographic to provide a
prediction with adequate
confidence that predicts as
well as in other demographic
groups.”

https://www.hsph.harvard.edu/ecpe/how-to-prevent-algorithmic-bias-in-health-care



https://www.hsph.harvard.edu/ecpe/how-to-prevent-algorithmic-bias-in-health-care

Summary

* We should probably assess bias in a very inclusive list of
sociodemographic and comorbidity labels, but know their limits

* A post hoc, model-agnostic approach to identifying bias within
certain patient subgroups is feasible

* SPADE has advantages over a priori decisions of bias detection
* Output can vary for the same model based on multiple factors

* This approach will need to be prospectively and externally
validated, and operationalized in an actionable way to improve
equity in sepsis prediction
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