#### **Breakout Session 1: Track B**

# Measuring and Mitigating the Impact of Biases in Laboratory Testing on Machine Learning Models

Mr. Trenton Chang Ph.D. Candidate, University of Michigan



## Measuring and Mitigating the Impact of Biases in Laboratory Testing on AI Models

Trenton Chang, MS

ctrenton@umich.edu

PhD Candidate in Computer Science & Engineering, University of Michigan

PIs: Jenna Wiens, PhD & Michael W. Sjoding, MD

## **Project Summary & Goals**

- Artificial intelligence (AI) tools can potentially assist in diagnostic decision making
- However, Al tools are susceptible to biases, resulting in poor generalization
- We aim to develop techniques and tools for understanding and mitigating potential biases

#### Highlights of our work:

- A large-scale observational study of bias in laboratory testing (under review)
- A method for mitigating the impact of laboratory testing bias on AI models (under review)

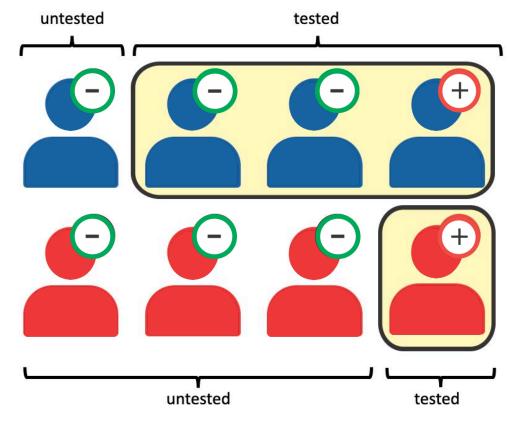
## Laboratory testing as a source of bias

White patients untested tested **Black patients** untested tested

## Untested = negative: the default assumption White patients

Many works in practice assumed untested patients are negative:

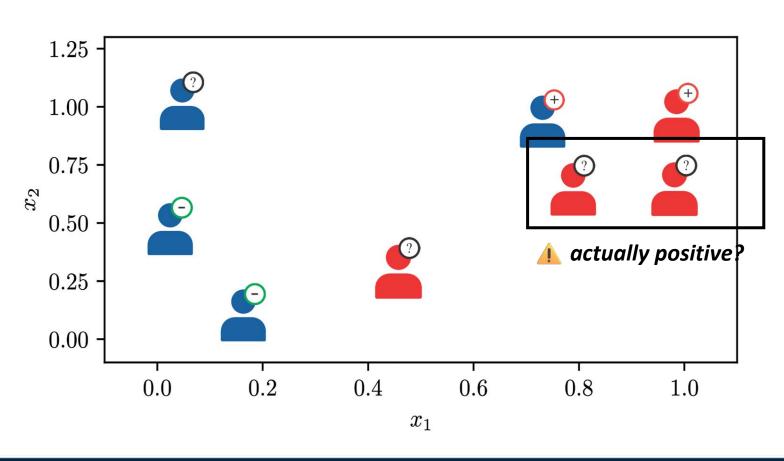




**Black patients** 

## Impact of testing bias on Al

An AI model might "see" training data as shown below:



In this example, an AI model trained on such data may underpredict the risk in Black patients.

## Is there evidence of such undertesting?

- We conducted a retrospective matched cohort study of 235,830 emergency department (ED) visits
- Question: were there significant differences in laboratory testing rates between White vs. Black patients?
- Cohorts: All adult ED visits by White and Black patients at Michigan Medicine (U-M), 2015-2022 & Beth Israel Deaconness Medical Center (BIDMC), 2011-2019
- Race: as collected during patient registration
- Main outcomes: Testing rate difference (% White % Black) for complete blood count, metabolic panel, arterial blood gas, blood culture, troponin, BNP, and ddimer. Secondary outcome: hospital admission rate.
- Matching: exact 1:1 matching on age, biological sex, chief complaint (text), and ED triage score (1 to 5).

## Cohort inclusion/exclusion summary

#### **Exclusion criteria:**

- Psychiatric visits
- Non-White/non-Black patients (incl. unknown/missing race)
- Patients with unknown biological sex

#### Before/after exclusion criteria:

Michigan Medicine: 602,650 —> 541,274

BIDMC: 447,109 —> 336,824

#### Before/after 1:1 exact matching

Michigan Medicine: 541,274 —> 141,510 (26.1% matched)

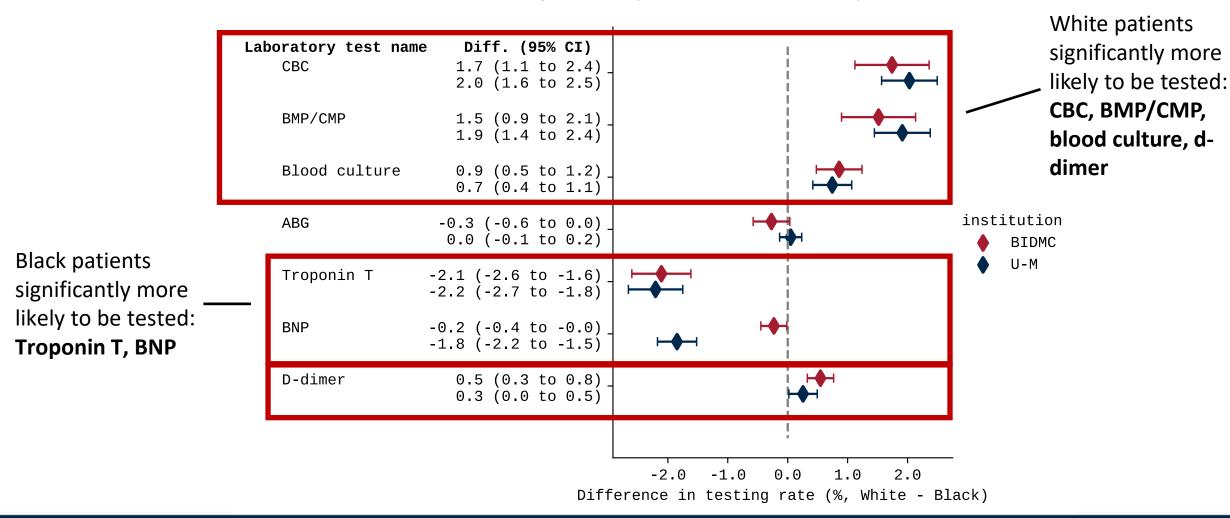
BIDMC: 336,824 —> 94,320 (28.0% matched)

## Summary of cohort characteristics (pre-matching)

- Age: Black patients were significantly younger than White patients on average (U-M: 55 vs. 46 years, p<.001; BIDMC: 52 vs. 43 years, p<.001)</li>
- **Biological sex:** Black patients were significantly more likely to be female (**U-M:** 52.0% vs. 62.0%; p<.001, **BIDMC:** 53.1% vs. 57.0%, p<.001)
- **ED triage scores:** Black patients were assessed as less ill on average (lower score; **U-M:** 2.6 vs. 2.7, **BIDMC:** 2.6 vs. 2.8). Chi-sq. test: p<.001.

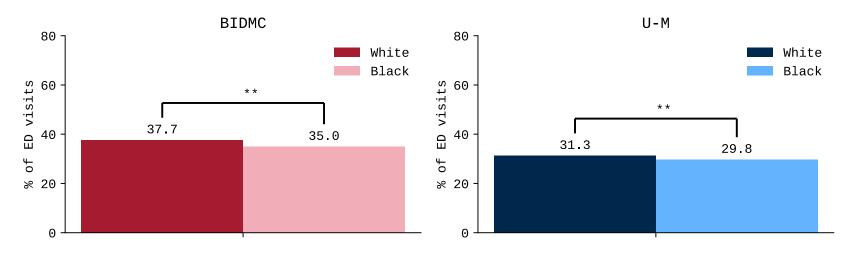
## Significant testing disparities in the ED

Difference in testing rates by race, matched analysis



## Hospital admission rate disparities

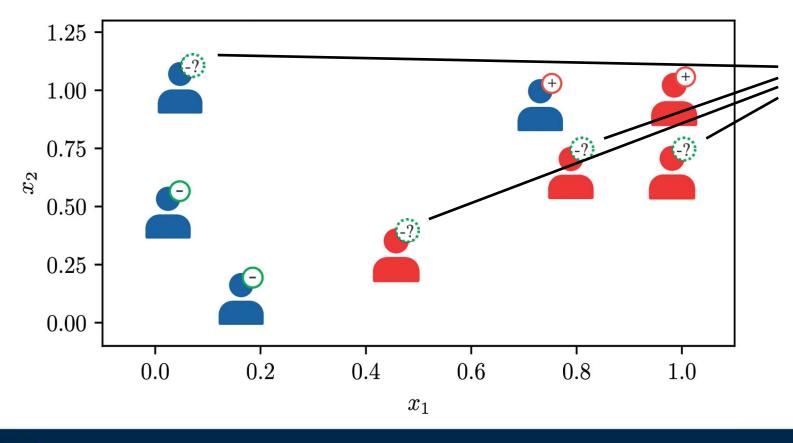
% of ED visits resulting in admission by race (matched)



After exact 1:1 matching, racial differences in hospital admission rate following an ED visit also persisted.

### A method for mitigating the impacts

We can interpret predicting missing laboratory test results as a
missing outcome problem — well-studied area in machine learning

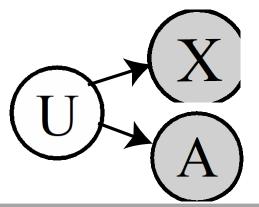


Can we "fill in the blanks?"

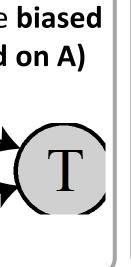
## Overview of our approach

We propose a probabilistic model for bias in laboratory testing and use an expectation-maximization algorithm to impute the missing test results

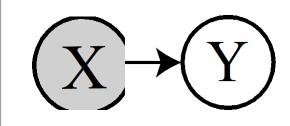
Demographic groups (A) might have different observed features (X)



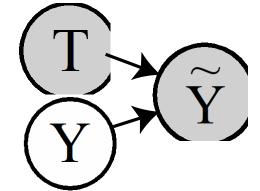
**Testing decisions** (T) can be biased (depend on A)



**Ground truth (Y)** does not directly depend on demographics (A)



**Observed label** is negative if untested; equal to Y if tested



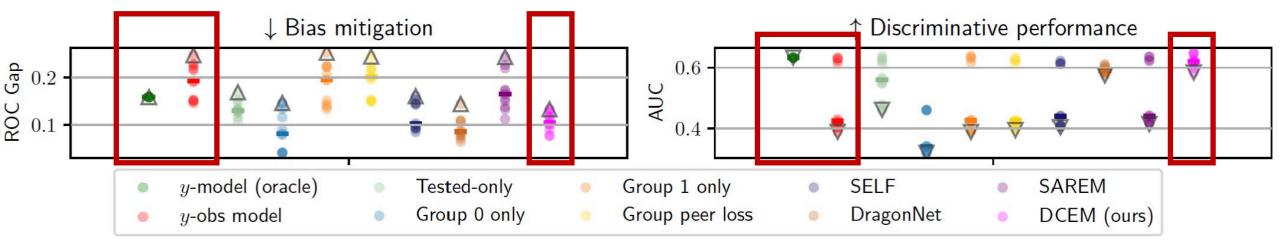
## Case study: sepsis classification

- Many sepsis definitions (e.g., Sepsis-3) are dependent on laboratory test results (blood culture) — no test = no diagnosis
- We aim to predict whether a patient will ever develop sepsis during a hospital stay
- We simulate multiple hypothetical testing decisions based on features used by the qSOFA score + report results across all replications
- We evaluate bias mitigation (similar performance across patient groups) and discriminative performance (can "separate" positive vs. negative) with respect to true sepsis labels

## **Empirical results**

#### **Key methods:**

- green = train on actual labels (best possible discriminative performance)
- red = default (assume untested = negative)
- magenta = our imputation-based method



Compared to baselines, our method mitigates bias and improves discriminative performance.

### **Future Work**

- Improved methods. The proposed approach eventually fails when testing rates are too low — can we improve the robustness of our method to low testing rates?
- Evaluation. Data is often missing in biased ways. Can we design a benchmark/dataset that allows us to evaluate modeling approaches in practice?