Breakout Session 7: Track A

Developing Computational Tools to Analyze the Structure of Nerve Cells in the Bowel to Better Understand Digestive Disease

Neurobiology of Intrinsic Afferent Neurons

Developing computational tools to analyze the structure of nerve cells in the bowel to better understand digestive disease 5R01DK129315-03

David R. Linden

2024 NIH ODSS AI Supplement Program Virtual PI Meeting, March 28, 2024

©2012 MFMER | slide-2

Structure-Function in Neuroscience

Images Courtesy of the Cajal Institute, Spanish National Research Council and the Nobel Prize Museum, Stockholm

MAYO CLINIC

. 79

Images from Dogiel, 1899 Republished in Furness, 2004, *The Enteric Nervous System* and Courtesy of Tomsk State University

Single Cell Enteric Neuron Analysis

Morarach et al., 2021 Nat. Neurosci. 24:34-46 Melo et al., 2020 Neurogastroenterol Motil 32:e13989

Different classes of IPANs possess morphologies and physiology that uniquely contribute to intestinal function

Ntng1+ ENC₁₂

NMU+

smIPAN

CCK+

ENC7

Diversity of Intrinsic Primary Afferent Neurons (IPANs)

Jejunum

NMU+

ENC6

Colon

Model and Methods

MAYO CLINIC

Enteric NeuroScience Program Created with BioRender.com

Single Cell 3D Reconstruction

Three Cell Morphologies Based on Soma Location and Branching Pattern

MAYO

AI/ML Collaboration

Created with BioRender.com

Semi-Automated Human-in-the-Loop AI Assisted Mapping

AI Assisted Pre-Mapping

- Dataset Trained on *C. elegans* neuron
- Connect 3D Shapes, Cleans Data
- Suppress Background

CNN Model

User Mapping Function

- 3D Graph Search
 - Dijkstra's Algorithm
 - A Star Search Algorithm

- Broken paths can be connected.
- User defines the Start and the End of the Neurite Branch.
- The mapping is performed in 3D.

Mapping Function: Neurite Extraction

- Traced 3D Voxels act as 3D Volumetric Mask
- Intensity Variation is captured within mask
- Adaptive histogram equalization extracts the neuron structure
- The whole neuron is one single connected object

3D Volumetric Mask

Application to Broad Neuroscience Field

Mapped Neuron Neuron Mask in 3D

Mayavi Scene 1 > X X Y Y Z Z 🕄 🖶 🔺 🔀 🖬

Franklin and Paxinos The Mouse Brain In Stereotaxic Coordinates 3rd Ed. 2008.

National Institutes of Health The BRAIN Initiative

Chuck Howe

Ben Clarkson Maria Westphal Kamrul Foysal

Tim Kline

George Cao

Hybrid Automated Enteric Neuron Mapping Model

Conclusions

- AI / ML Supports Aims of Parent R01
 - Enhanced Throughput
 - Enhanced Objectivity
- Creation of Neuron Morphology Datasets for Future AI / ML
 - Ground Truth to Improve Fully Automated AI/ML Models
 - Applicability to Broad Neuroscience Community

